斜弯曲组合变形优秀课件_第1页
斜弯曲组合变形优秀课件_第2页
斜弯曲组合变形优秀课件_第3页
斜弯曲组合变形优秀课件_第4页
斜弯曲组合变形优秀课件_第5页
已阅读5页,还剩40页未读, 继续免费阅读

下载本文档

kok电子竞技权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

kok电子竞技:文档简介

1、1 6. 6 斜弯曲与弯拉组合斜弯曲与弯拉组合四种基本变形:拉伸(压缩)、剪切、扭转、弯曲一、组合变形一、组合变形xyzcPxyzcPxyzcM2组合变形:由两种或两种以上基本变形组合的变形。xyzcP1P2xyzcP1P2F3二、叠加原理二、叠加原理分析组合变形时,可以先将外力进行简化或分解,转化为几组静力等效的载荷,其中每一组载荷对应着一种基本变形(拉压、扭转或弯曲)。xyzcP1xyzcP2xyzcP1P24 这样,可以分别计算每一种基本变形各自引起的内力、应力、应变和位移,然后把所得的结果进行叠加,便是构件在组合变形下的内力、应力、应变和位移。这就是叠加原理。条件:要求内力、应力、应变

2、和位移等与外力呈线性关系xyzcP1xyzcP2xyzcP1P25 当载荷作用面不在梁的主形心惯性平面内时,梁的弯曲轴线将不在载荷作用面内,即发生斜弯曲。此时,中性轴不再与载荷的作用面垂直。yzcP平面弯曲的两大特征:平面弯曲的两大特征:1、弯曲后的轴线在载荷作用面内;2、中性轴与载荷的作用面垂直。要求:要求:载荷作用在主形心惯性平面内载荷作用在主形心惯性平面内两相互垂直平面内弯曲的组合两相互垂直平面内弯曲的组合三、斜弯曲三、斜弯曲6 矩形桁条(屋架) 偏心荷载作用下的柱子 烟囱受风和自重作用,属于压弯构件三、其他组合变形三、其他组合变形7 Fy=F cos Fz=F sin yLFxzxFz

3、Fy1.1.外力分解外力分解 ( (使每个力单独作用时,仅发使每个力单独作用时,仅发生基本变形生基本变形) )8内力:内力:x截面截面ylFxz xFzFy2.2.分别计算各基本变形的内力、应力分别计算各基本变形的内力、应力M=F(l x) 总弯矩总弯矩V=F9ylPxz xPzPyMyMzzyVy= Fy =Fcos Vz =Fz=Fsin 组合变形时,通:雎酝淝杏α。组合变形时,通:雎酝淝杏α。(上拉、下压上拉、下压)(后拉、前压后拉、前压)可不定义弯矩的符号,标明弯曲方向可不定义弯矩的符号,标明弯曲方向coscosMxlFxlFMyzsinsinMxlFxlFMzy10Mz:zz

4、MyI My:yyMzI MzzyzyD1D2MyD1D2 应力应力11 由于两种基本变形由于两种基本变形横截面上只有正应力,横截面上只有正应力,于是于是“加加”成了代数成了代数和。和。截面上任意截面上任意C点应力点应力yzCCzyMMyzII MyMzzyD1D2C3.3.应力叠加应力叠加zyD1D2My MzzyD1D2zzMyI yyMzI 截面的危险点在哪?截面的危险点在哪?12危险截面危险截面 x=0危险点危险点 D1最大拉应力,最大拉应力, D2最大压应力最大压应力危险点应力状态危险点应力状态 单向应力状态单向应力状态(数值相等数值相等)强度条件:强度条件: max (D1是单向拉

5、伸,是单向拉伸, D2是单向压缩是单向压缩)4.4.强度计算强度计算MyMzzyD1D2CMzzyD1D2zyD1D2My 总弯矩总弯矩 M=F(l x)13点点D1(y1, z1)max11 yzzyMMyzII 显然显然1,zzIWy 1yyIWz 强度条件:强度条件: yzzyMMWW zyD1D2My MzzyD1D214 不失一般性,令第不失一般性,令第一象限的点的应力为零一象限的点的应力为零即可得到即可得到中性轴方程中性轴方程.yzzyMMyzII y0, z0为中性轴上的点为中性轴上的点00 0 5.5.中性轴中性轴( (零应力线零应力线) )或写成或写成00yzzyMIyzMI

6、 MzMyzyc(y, z)15可见中性轴为一条过截可见中性轴为一条过截面形心的直线,它与面形心的直线,它与z轴轴的夹角的夹角 为:为:00yzzzyyMIIytgtgzMII 当当Iz Iy时,时, 即中性轴不再垂直于荷载即中性轴不再垂直于荷载作用面。作用面。MzMy zy中性轴中性轴荷载作用面荷载作用面cos ()coszMPlxMsin ()sinyMPlxM 00yzzyMIyzMI 中性轴方程中性轴方程Fy引起的自由端的挠度zEIlPfyy33 Fz引起的自由端的挠度yEIlPfzz33 Fy=F cos Fz=F sin fy zy中性轴中性轴荷载作用面荷载作用面fzyFxz Fz

7、Fy22|zyfff tgIIIFIFEIlFEIlFfftgyzyyzzzyyzyz3333当当Iz Iy时,时, 即位移不再发生在荷载作用面。即位移不再发生在荷载作用面。因而不属于平面弯曲。因而不属于平面弯曲。fy zy中性轴中性轴fzf yFxz FzFyzyItgtgI xy面内y方向的力引起Mzxz面内z方向的力引起My合弯矩M=My+Mz仍在对称面内,于是总是可以用平面弯曲的公式来进行应力计算,不过此时中性轴已不是y轴或 z轴。MzMyMyMzMzy对于Iz=Iy的截面(如圆形截面)Problem:1 1、圆截面梁或正方形截面、圆截面梁或正方形截面梁会不会发生斜弯曲?梁会不会发生斜

8、弯曲?2 2、下图圆截面的弯曲应力怎、下图圆截面的弯曲应力怎么计算?么计算?yzcPyzcyzcMM tgIItgyz zyItgtgI 如求a点应力dIMM: 合弯矩 I: 对中性的惯性矩644DIIIzy d: a点到中性轴的矩离。MyMzMzyda中性轴中性轴21作与中性轴平行的作与中性轴平行的直线与截面相切的点直线与截面相切的点(D1,D2)即为最大拉应力和最即为最大拉应力和最大压应力点。将这些点的大压应力点。将这些点的坐标坐标(y, z)代入应力公式,代入应力公式,即可求得最大正应力。即可求得最大正应力。D1D2MzMyzy中性轴中性轴荷载作用面荷载作用面利用中性轴确定截面危险点22

9、CCozqq=5kN/mP=2kN =30 3myzy1m 图示悬臂梁由图示悬臂梁由24b工字钢制成,弹性模量工字钢制成,弹性模量E=200GPa。载荷和几何尺寸如图所示,试求:。载荷和几何尺寸如图所示,试求: (1) 求梁上求梁上C点的正应力;点的正应力; (2) 求梁内最大拉应力和最大压应力。求梁内最大拉应力和最大压应力。23解:解: (1)查表()查表(24b工字钢):工字钢):45283.96 zIcm 3422.72 zWcm 4309.297 yIcm 352.423 yWcm 25013112 22chytmm 11859 22cbzmm tzybh.C250 , 13mm ,

10、118hmmtbmm 24(2) 外力分解外力分解cos2 cos301.732yPPkN sin2 sin301zPPkN (3) 求求C点所在截面弯矩点所在截面弯矩2) 13(21) 13(qPMyczmkN 46.1325212732. 12(上拉,下压上拉,下压)mkNPMzcy221) 13(后拉,前压后拉,前压)zqPyx1m3mCtzybh.C25yCzcczyMMyzII 335613.46 102 100.1120.0595.284 103.093 10 69.62 10 Pa9.62 MPa zqPyx1m3mCtzybh.CMzMy(4) 求求 c26(4)求求 Lmax

11、 , Cmax在固定端有最大弯矩,因而在固定端有最大弯矩,因而 Lmax , Cmax发生在该面上。发生在该面上。22max35213732. 121qllPMyz(上拉,下压)mkNlPMzy331max(后拉,前压)mkN 70.27zqPyx1m3mC27显然,最大拉应力发生在固端截面上的显然,最大拉应力发生在固端截面上的A点。点。最大压应力发生在固端截面上的最大压应力发生在固端截面上的B点。点。tzybhABMzMy(上拉,下压上拉,下压)mkNmax 3yM(后拉,前压后拉,前压)mkN.max 7027zM28maxyzLAAAzyMMyzII 336627.70 103 1042

12、2.7 1052.42 10yzzyMMWW 6123 10 Pa123 PM a max123 PBCM a tzybhABMzMyxP1xP2轴向拉压平面弯曲螺旋夹紧器 FNM简易起重机的横梁简易起重机的横梁自重引起轴向压缩,自重引起轴向压缩,水平风力引起弯曲。水平风力引起弯曲。横向力和轴向力同时存在;力作用于截面形心,但作用线与x轴成一定夹角;力作用线与轴线平行,但不通过截面形心; 在这些情况下,杆将产生弯曲与轴向拉压在这些情况下,杆将产生弯曲与轴向拉压的组合变形,简称的组合变形,简称弯拉弯拉(压压)组合变形组合变形。xP xP1P2PxPyxPPy=Psin y为对称轴,引起平面弯曲为

13、对称轴,引起平面弯曲Px=Pcos 引起轴向拉伸引起轴向拉伸lxPxPyyP xFN=PxMz=Py(l x)只有一个方向只有一个方向的弯矩,就用平面的弯矩,就用平面弯曲的弯矩符号规弯曲的弯矩符号规定。剪力的影响忽定。剪力的影响忽略不计。略不计。+PxPyPxFNMzPyll+叠加叠加NzzMFyAI FN对应的应力对应的应力AFN Mz对应的应力对应的应力yIMzz yz叠加后,横截面上正应力分布规律只可能叠加后,横截面上正应力分布规律只可能为以下三种情况:为以下三种情况:|NzzWMAF |NzzWMAF |NzzWMAF yIMAFzz N 危险点的位置很容易确危险点的位置很容易确定,在

14、截面的最上缘或最下定,在截面的最上缘或最下缘,由于危险点的应力状态缘,由于危险点的应力状态为为简单应力状态简单应力状态(单向拉伸或单向拉伸或单向压缩单向压缩)强度条件强度条件 max ,m axNm axzzMFAW yz注意:当注意:当 c与与 t不相等时,需分别计算出不相等时,需分别计算出 c,max和和 t,max再:。再:。3m1m30 CBP=45kNAD解:解: AB梁受力分梁受力分析析由由AB梁的平衡方程易求得梁的平衡方程易求得NBC=120kNXA=104kN45kN mMz+104kNFNYA=15kN 作内力图作内力图显然危险截面为显然危险截面为B截面左侧截面左侧 XA

15、PYA30NBCB危险点为危险点为B截面最上缘截面最上缘由强度条件:由强度条件:Nmaxmax AFWMz由于型钢的由于型钢的Wz, A无一定的函数关系,一个不等式不无一定的函数关系,一个不等式不可能确定两个未知量,因此采用试算的方法来求解。可能确定两个未知量,因此采用试算的方法来求解。()M N()F 3m1m30 CBP=45kNA试算: 先不考虑轴力FN,仅考虑弯矩M设计截面max zMW 363max645 10281 10 160 10zMWm 3281cm 查型钢表: 22a 工字钢Wz = 309cm3 A=42cm2 :22a工字钢能否满足弯矩和轴力同时存在时的强度条件。Pa

16、Nmaxmax6436310170104210104103091045 AFWMz MPaMPa160170 强度不够,选大一号22b Wz = 325cm3 A=46.4cm2MPa8 .160104 .46101041032510454363%5%5 . 01601608 .160max 可认为安全 可取22b工字钢AFWMzNmaxmax 作业:作业:6-26 6-34 6-39有一座高为有一座高为1.2m、厚为、厚为0.3m的混凝土的混凝土墙,浇筑于牢固的基础上,用作挡水墙,浇筑于牢固的基础上,用作挡水用的小坝。试求:用的小坝。试求: (1)当水位达到墙顶时墙底处的)当水位达到墙顶时墙底处的最大拉应力和最大压应力(设混凝土最大拉应力和最大压应力(设混凝土的密度为的密度为 ););(2)如果要求混凝土中没有拉应力)如果要求混凝土中没有拉应力,试问最大许可水深,试问最大许可水深h为多大?为多大?45若有不当之处,请指正,谢谢!

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论