2023学年河南省南阳中学高考仿真模拟数学试卷(含解析)_第1页
2023学年河南省南阳中学高考仿真模拟数学试卷(含解析)_第2页
2023学年河南省南阳中学高考仿真模拟数学试卷(含解析)_第3页
2023学年河南省南阳中学高考仿真模拟数学试卷(含解析)_第4页
已阅读5页,还剩15页未读, 继续免费阅读

下载本文档

kok电子竞技权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

kok电子竞技:文档简介

2023学年高考数学模拟测试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若关于的方程有且只有一个实数根,则实数的取值范围是()A. B.C. D.2.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为A. B. C. D.3.已知幂函数的图象过点,且,,,则,,的大小关系为()A. B. C. D.4.在函数:①;②;③;④中,最小正周期为的所有函数为()A.①②③ B.①③④ C.②④ D.①③5.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为()A. B. C. D.6.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.17.已知直线y=k(x+1)(k>0)与抛物线C相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则|FA|=()A.1 B.2 C.3 D.48.已知函数,,的零点分别为,,,则()A. B.C. D.9.执行程序框图,则输出的数值为()A. B. C. D.10.若函数在处有极值,则在区间上的最大值为()A. B.2 C.1 D.311.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},则A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}12.已知命题:使成立.则为()A.均成立 B.均成立C.使成立 D.使成立二、填空题:本题共4小题,每小题5分,共20分。13.在中,已知,,则A的值是______.14.已知,若的展开式中的系数比x的系数大30,则______.15.数学家狄里克雷对数论,数学分析和数学物理有突出贡献,是解析数论的创始人之一.函数,称为狄里克雷函数.则关于有以下结论:①的值域为;②;③;④其中正确的结论是_______(写出所有正确的结论的序号)16.在的展开式中,的系数为______用数字作答三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,椭圆C:x2a2(1)求椭圆C的方程;(2)假设直线l:y=kx+m与椭圆C交于A,B两点.①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且ON=62OM,求OB的长;②若原点O到直线l的距离为1,并且18.(12分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系.19.(12分)已知椭圆:()的左、右顶点分别为、,焦距为2,点为椭圆上异于、的点,且直线和的斜率之积为.(1)求的方程;(2)设直线与轴的交点为,过坐标原点作交椭圆于点,试探究是否为定值,若是,求出该定值;若不是,请说明理由.20.(12分)已知函数.(1)当时,判断在上的单调性并加以证明;(2)若,,求的取值范围.21.(12分)已知,点分别为椭圆的左、右顶点,直线交于另一点为等腰直角三角形,且.(Ⅰ)求椭圆的方程;(Ⅱ)设过点的直线与椭圆交于两点,总使得为锐角,求直线斜率的取值范围.22.(10分)如图所示,在四棱锥中,底面为正方形,,,,,为的中点,为棱上的一点.(1)证明:面面;(2)当为中点时,求二面角余弦值.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】

利用换元法设,则等价为有且只有一个实数根,分三种情况进行讨论,结合函数的图象,求出的取值范围.【题目详解】解:设,则有且只有一个实数根.当时,当时,,由即,解得,结合图象可知,此时当时,得,则是唯一解,满足题意;当时,此时当时,,此时函数有无数个零点,不符合题意;当时,当时,,此时最小值为,结合图象可知,要使得关于的方程有且只有一个实数根,此时.综上所述:或.故选:A.【答案点睛】本题考查了函数方程根的个数的应用.利用换元法,数形结合是解决本题的关键.2、B【答案解析】

求得基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,利用古典概型及其概率的计算公式,即可求解.【题目详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,所以乙丙两人恰好参加同一项活动的概率为,故选B.【答案点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.3、A【答案解析】

根据题意求得参数,根据对数的运算性质,以及对数函数的单调性即可判断.【题目详解】依题意,得,故,故,,,则.故。篈.【答案点睛】本题考查利用指数函数和对数函数的单调性比较大。疾橥评砺壑つ芰,属基础题.4、A【答案解析】逐一考查所给的函数:,该函数为偶函数,周期;将函数图象x轴下方的图象向上翻折即可得到的图象,该函数的周期为;函数的最小正周期为;函数的最小正周期为;综上可得最小正周期为的所有函数为①②③.本题选择A选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误.一般地,经过恒等变形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.5、C【答案解析】

先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率.【题目详解】所有的情况数有:种,3个数中至少有2个阳数且能构成等差数列的情况有:,共种,所以目标事件的概率.故。篊.【答案点睛】本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算.6、B【答案解析】

过点的直线与圆:相切于点,可得.因此,即可得出.【题目详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故。築.【答案点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.7、C【答案解析】

方法一:设,利用抛物线的定义判断出是的中点,结合等腰三角形的性质求得点的横坐标,根据抛物线的定义求得,进而求得.方法二:设出两点的横坐标,由抛物线的定义,结合求得的关系式,联立直线的方程和抛物线方程,写出韦达定理,由此求得,进而求得.【题目详解】方法一:由题意得抛物线的准线方程为,直线恒过定点,过分别作于,于,连接,由,则,所以点为的中点,又点是的中点,则,所以,又所以由等腰三角形三线合一得点的横坐标为,所以,所以.方法二:抛物线的准线方程为,直线由题意设两点横坐标分别为,则由抛物线定义得又①②由①②得.故。篊【答案点睛】本小题主要考查抛物线的定义,考查直线和抛物线的位置关系,属于中档题.8、C【答案解析】

转化函数,,的零点为与,,的交点,数形结合,即得解.【题目详解】函数,,的零点,即为与,,的交点,作出与,,的图象,如图所示,可知故。篊【答案点睛】本题考查了数形结合法研究函数的零点,考查了学生转化划归,数形结合的能力,属于中档题.9、C【答案解析】

由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.【题目详解】,,,,,满足条件,,,,,满足条件,,,,,满足条件,,,,,满足条件,,,,,不满足条件,输出.故。篊【答案点睛】本题主要考查程序框图中的循环结构,属于简单题.10、B【答案解析】

根据极值点处的导数为零先求出的值,然后再按照求函数在连续的闭区间上最值的求法计算即可.【题目详解】解:由已知得,,,经检验满足题意.,.由得;由得或.所以函数在上递增,在上递减,在上递增.则,,由于,所以在区间上的最大值为2.故。築.【答案点睛】本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题.11、D【答案解析】

解一元二次不等式化简集合,再由集合的交集运算可得选项.【题目详解】因为集合,故。篋.【答案点睛】本题考查集合的交集运算,属于基础题.12、A【答案解析】试题分析:原命题为特称命题,故其否定为全称命题,即.考点:全称命题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】

根据正弦定理,由可得,由可得,将代入求解即得.【题目详解】,,即,,,则,,,,则.故答案为:【答案点睛】本题考查正弦定理和二倍角的正弦公式,是基础题.14、2【答案解析】

利用二项展开式的通项公式,二项式系数的性质,求得的值.【题目详解】展开式通项为:且的展开式中的系数比的系数大,即:解得:(舍去)或本题正确结果:【答案点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.15、②【答案解析】

根据新定义,结合实数的性质即可判断①②③,由定义求得比小的有理数个数,即可确定④.【题目详解】对于①,由定义可知,当为有理数时;当为无理数时,则值域为,所以①错误;对于②,因为有理数的相反数还是有理数,无理数的相反数还是无理数,所以满足,所以②正确;对于③,因为,当为无理数时,可以是有理数,也可以是无理数,所以③错误;对于④,由定义可知,所以④错误;综上可知,正确的为②.故答案为:②.【答案点睛】本题考查了新定义函数的综合应用,正确理解题意是解决此类问题的关键,属于中档题.16、1【答案解析】

利用二项展开式的通项公式求出展开式的通项,令,求出展开式中的系数.【题目详解】二项展开式的通项为令得的系数为故答案为1.【答案点睛】利用二项展开式的通项公式是解决二项展开式的特定项问题的工具.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)x22+y2【答案解析】

(1)根据椭圆的几何性质可得到a2,b2;(2)联立直线和椭圆,利用弦长公式可求得弦长AB,利用点到直线的距离公式求得原点到直线l的距离,从而可求得三角形面积,再用单调性求最值可得值域.【题目详解】(1)因为两焦点与短轴的一个顶点的连线构成等腰直角三角形,所以a=2又由右准线方程为x=2,得到a2解得a=2,c=1,所以所以,椭圆C的方程为x2(2)①设B(x1,y1∵ON=6因为点B,N都在椭圆上,所以x122+y12所以OB=x②由原点O到直线l的距离为1,得|m|1+k2联立直线l的方程与椭圆C的方程:y=kx+mx2设A(x1,y1OA=(1+k2)所以k△OAB的面积S==1因为S=2λ(1-λ)在[并且当λ=45时,S=225所以△OAB的面积S的范围为[10【答案点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.18、直线与圆C相切.【答案解析】

首先把直线和圆转换为直角坐标方程,进一步利用点到直线的距离的应用求出直线和圆的位置关系.【题目详解】直线为参数),转换为直角坐标方程为.圆转换为直角坐标方程为,转换为标准形式为,所以圆心到直线,的距离.直线与圆C相切.【答案点睛】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线与圆的位置关系式的应用,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19、(1)(2)是定值,且定值为2【答案解析】

(1)设出点坐标并代入椭圆方程,根据列方程,求得的值,结合求得的值,进而求得椭圆的方程.(2)设出直线的方程,联立直线的方程和椭圆方程,求得点的横坐标,联立直线的方程和椭圆方程,求得,由此化简求得为定值.【题目详解】(1)已知点在椭圆:()上,可设,即,又,且,可得椭圆的方程为.(2)设直线的方程为:,则直线的方程为.联立直线与椭圆的方程可得:,由,可得,联立直线与椭圆的方程可得:,即,即.即为定值,且定值为2.【答案点睛】本小题主要考查本小题主要考查椭圆方程的求法,考查椭圆中的定值问题的求解,考查直线和椭圆的位置关系,考查运算求解能力,属于中档题.20、(1)在为增函数;证明见解析(2)【答案解析】

(1)令,求出,可推得,故在为增函数;(2)令,则,由此利用分类讨论思想和导数性质求出实数的取值范围.【题目详解】(1)当时,.记,则,当时,,.所以,所以在单调递增,所以.因为,所以,所以在为增函数.(2)由题意,得,记,则,令,则,当时,,,所以,所以在为增函数,即在单调递增,所以.①当,,恒成立,所以为增函数,即在单调递增,又,所以,所以在为增函数,所以所以满足题意.②当,,令,,因为,所以,故在单调递增,故,即.故,又在单调递增,由零点存在性定理知,存在唯一实数,,当时,,单调递减,即单调递减,所以,此时在为减函数,所以,不合题意,应舍去.综上所述,的取值范围是.【答案点睛】本题主要考查了导数的综合应用,利用导数研究函数的单调性、最值和零点及不等式恒成立等问题,考查化归与转化思想、分类与整合思想、函数与方程思想,考查了学生的逻辑推理和运算求解能力,属于难题.21、(Ⅰ);(Ⅱ).【答案解析】

(Ⅰ)由题意可知:由,求得点坐标,即可求得椭圆的方程;(Ⅱ)设直线,代入椭圆方程,由韦达定理,由,由为锐角,则,由向量数量积的坐标公式,即可求得直线斜率的取值范围.【题目详解】解:(Ⅰ)根据题意是等腰直角三角形,,设由得则代入椭圆方程得椭圆的方程为(Ⅱ)根据题意,直线的斜率存在,可设方程为设由得由直线与椭圆有两个不同的交点则即得又为锐角则即②由①②得或故直线斜率可取值范围是【答案点睛】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查向量数量积的坐标运算,韦达定理,考查计算能力,属于中档题.22、(1)证明见解析;(2).【答案解析】

(1)要证明面面,只需证明面即可;(2)以为坐标原点,以,,分别为,,轴建系,分别计算出面法向量,面的法向量,再利用公式计算即可.【题目详解】证明:(1)因为底面为正方形,所以又因为,,满足,所以又,面,面,,所以面.又因为面,所以,面面.(2)由(1)知,,两两垂直,以为坐标原点,以,,分别为,,轴建系如图所示,则,,,,则,.所以,,,,设面法向量为,则由得,令得,,即;同理,设面的法向量为,则由得,令得,,即,所以,设二面角的大小为,则所以二面角余弦值为.【答案点睛】本题考查面面垂直的证明以及利用向量法求二面角,考查学生的运算求解能力,此类问题关键是准确写出点的坐标,是一道中档题.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论