




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
kok电子竞技:文档简介
ElectronicTunnelingthroughDissipativeMolecularBridgesUriPeskin
DepartmentofChemistry,Technion-IsraelInstituteofTechnologyMusaAbu-Hilu(Technion)AlonMalka(Technion)ChenAmbor(Technion)MaytalCaspari(Technion)RoiVolkovich(Technion)DaryaBrisker(Technion)VikaKoberinski(Technion)Prof.ShammaiSpeiser(Technion)Thanking:OutlineMotivation:
Controlledelectrontransportinmoleculardevicesandinbiologicalsystems.Background:ETinDonor-Acceptorcomplexes:TheGoldenRule,theCondonapproximatonandthespin-bosonHamiltonian.ETinDonor-Bridge-Acceptorcomplexes:McConnell’sformulaforthetunnelingmatrixelements.Theproblem:Electronic-nuclearcouplingatthemolecularbridgeandthebreakdownoftheCondonapproximation.Themodelsystem:Generalizedspin-bosonHamiltoniansfordissipativethrough-bridgetunneling.Results:Theweakcouplinglimit:Langevin-Schroedingerformulation,simulationsandinterpretationofETthroughadissipativebridgeBeyondtheweakcouplinglimit:Ananalyticformulaforthetunnelingmatrixelementinthedeeptunnelingregime.Conclusions:Promotionoftunnelingthroughmolecularbarriersbyelectronic-nuclearcoupling.Theeffectofmolecularrigidity.Motivation:ElectronTransportThroughMoleculesMolecularElectronicsResonanttunnelingthroughmolecularjunctions
Tans,Devoret,Thess,Smally,Geerligs,Dekker,Nature(2019)Reichert,Ochs,Beckmann,Weber,Mayor,Lohneysen,Phys.Rev.Lett.(2019).
Long-rangeElectronTransportInNatureThePhotosyntheticReactionCenterDeep(off-resonant)tunnelingthroughmolecularbarriers
Electrontransferiscontrolledbymolecularbridges
Tunnelingpathwaybetweencytochromeb5andmethaemoglobinControlledtunneling
throughmolecules?MinorchangestothemolecularelectronicdensityHighsensitivity(exponential)tothemolecularparametersApotentialforarationaldesignbasedonchemicalknowledgeResonanttunnelingDeep(offresonant)tunnelingWhyOff-Resonant(deep)Tunneling?ElectronTransferinDonor-AcceptorPairsDonor
AcceptorElectronictunnelingmatrixelementNuclearfactor:Frank-CondonweighteddensityofstatesTheroleofelectronicnuclearcoupling?Thecaseofthroughbridgetunneling:Theory:ElectronTransferinDonor-AcceptorPairsTheelectronicHamiltonian:Diabaticelectronicbasisfunctions:TheHamiltonianmatrix:Theory:ElectronTransferinDonor-AcceptorPairsASpinBosonHamiltonian:TheHarmonicapproximation:Theory:ElectronTransferinDonor-AcceptorPairsTheCondonapproximationDonor
AcceptorThegoldenruleexpressionfortherateAnelectronictunnelingmatrixelementAnuclearfactorMcConnell(1961):Introducingasetofbridgeelectronicstates;ThedirecttunnelingmatrixelementvanishesDonor
AcceptorLongRangeElectronicTunnelingThedonorandacceptorsitesareconnectedviaaneffectivetunnelingmatrixelementthroughthebridgeMcConnell’s
Formula:
AtightbindingmodelThedeeptunnelingregime:
FirstorderperturbationtheoryAsimpleexpressionfor
theeffectivetunnelingmatrixelementTunneling
oscillationsatafrequency:
Superexchangedynamicsthrough
asymmetricuniformbridgeH.M.McConnell,J.Chem.Phys.35,508(1961)DeeptunnelingthroughamolecularbridgeTheroleofbridgenuclearmodes?ValidityoftheCondonapproximation?
Davis,RatnerandWasielewski(J.A.C.S.2019).
Molecules1-5Chargetransferisgatedbybridgevibrations
Electronicnuclearcouplingatthebridge:
RigidbridgesenablehighlyefficientelectronenergytransferLokan,Paddon-Row,Smith,LaRosa,GhigginoandSpeiser(J.A.C.S.2019).BreakdownoftheCondonapproximation!Structural(promoting)bridgemodes:Electronicallyactive(accepting)bridgemodes:Ageneralized“spin-boson”model:ThenuclearpotentialenergysurfacechangesatthebridgeelectronicsitesHarmonicnuclearmodesLineare-nuclearcouplinginthebridgemodesThee-nuclearcouplingisrestrictedtothebridgesitesADissipativeSuperexchangeModel:
Asymmetricuniformbridge
IntroducingnuclearmodeswithanOhmic()spectraldensity
Thenuclearfrequencies:10-500(1/cm)arelargerthanthetunnelingfrequency!!
andauniformelectronic-nuclearcoupling:
M.A-HiluandU.Peskin,Chem.Phys.296,231(2019).CoupledElectronic-NuclearDynamicsAmean-fieldapproximation:ThecoupledSCFequations:Mean-fields:TheLangevin-SchroedingerequationAnon-linear,nonMarkoviandissipationtermFluctuationsAtzerotemperature,R(t)vanishesInitialnuclearpositionandmomentumElectronicbridgepopulationU.PeskinandM.Steinberg,J.Chem.Phys.109,704(2019).NumericalSimulations:Weake-ncouplingThetunnelingfrequencyincreases!Thetunnelingissuppressed!Simulations:Stronge-nCouplingInterpretation:atime-dependentHamiltonianTheInstantaneouselectronicenergy:
Weakcoupling:EnergydissipationintonuclearvibrationslowersthebarrierforelectronictunnelingAtime-dependentMcConnellformulaInterpretation:atime-dependentHamiltonianTheInstantaneouselectronicenergy:
Weakcoupling:EnergydissipationintonuclearvibrationslowersthebarrierforelectronictunnelingStrongcoupling:“Irreversible”electronicenergydissipation
ResonantTunnelingNumericallyexactsimulationsforasinglebridgemodeTunnelingsuppression
atstrongcouplingTunnelingacceleration
atweakcoupling
Adissipative-acceptormodel:Theacceptorpopulation:DissipationleadstoaunidirectionalETThetunnelingrateIncreaseswithe-ncouplingatthebridge!Introducing
abridgemodeA.MalkaandU.Peskin,Isr.J.Chem.(2019).Adimensionlessmeasurefortheeffectiveelectronic-nuclearcoupling:Interpretation:NuclearpotentialenergysurfacesDeeptunneling=weakelectronicinter-sitecouplingEntangledelectronic-nucleardynamics
beyondtheweakcouplinglimitAsmallparameter:Thesymmetricuniformbridgemodel:M.A.-HiluandU.Peskin,submittedforpublication(2019).ARigorousFormulation
TheDonor/AcceptorHamiltonianTheBridge
HamiltonianThecouplingHamiltonian(purelyelectronic!)Introducingvibrationaleigenstates:Diagonalizingthetight-bindingoperator:Regardingtheelectroniccouplingasa(secondorder)perturbation
Intheabsenceofelectroniccouplingthegroundstateisdegenerate:Theenergysplittingtemperaturereads:Frank-CondonoverlapfactorsTheenergysplitting:Expandingthedenominatorsinpowersof
andkeepingtheleadingnonvanishingtermsgivesInterpretation:EffectiveelectroniccouplingEffectivebarrierfortunnelingMcConnell’sexpression:
Summationover
vibronictunnelingpathways:LowerbarrierfortunnelingMultiple“Dissipative”pathwaysTheeffectivetunnelingbarrierdecreasesAnexample(N=8)Thetunnelingfrequencyincreasesbyordersofmagnitudewithincreasingelectronicnuclearcoupling1/cm
The“slowelectron”adiabaticlimitConsideringonlythegroundnuclearvibrationalstate:Aconditionforincreasingthetunnelingfrequencybyincreasingelectronic-nuclearcoupling:Anexample(N=8)TheslowelectronapproximationSpectraldensitiesMolecularrigidity=smalldeviationsfromequilibrium configuration
Flexiblevs.RigidmolecularbridgesIncreasingrigidity
Aconsistencyconstraint:
Langevin-Schroedingersimulations:ThetunnelingfrequencyincreaseswithbridgerigidityArigoroustreatment:
The“slowelectron”limit
Rigidity=largerFrankCondonfactor!SummaryandConclusionsArigorouscalculationofelectronictunnelingfrequenciesbeyondtheweakelectronic-nuclearcouplinglimit,predictsaccelerationbyordersofmagnitudesforsomemolecularparametersAnanalyticalapproachwasintroducedandaformulawasderivedforcalculationsoftunnelingmatrixelementsinadissipativeMcConnellmodel.Acomparisonwithapproximatemethodsforstudyingopenquantumsystemsissuggested.Thewayforrationallydesigned,controlledelectrontransportin“moleculardevices”isstilllong…Theeffectofelectronic-nuclearcouplinginelectronicallyactivemolecularbridgeswasstudiedusinggeneralizedMcConnellmodelsincludingbridgevibrations.Mean-fieldLangevin-Schroedingersimulationsofthecoupledelectronic-nucleardynamicssuggestthatweakelectronic–nuclearcouplingpromotesoff-resonant(deep)throughbridgetunnelingLong-rangeElectronTransportInNatureDeep(off-resonant)tunnelingthroughmolecularbridges
Electrontransferiscontrolledbymolecularbarriers:
Fig.6.Calculatedpath(green)forelectrontunnelingbetweenanelectrostaticallydockedcytochromeb5(left)andmethaemoglobin(right)Long-rangeElectronTransportInNatureThisenzymeisusedbythebacteriumtoallowittoinhabitareasoflowoxygenconcentrationwhenitleadstoinfectionsinhumans.Itcontainsacalciumionwhichappearstobecrucialinthecontrolofelectrontransfer.(Fig9)Fig.9.Thecalculatedrouteofelectrontransferbetweenthetwohaemgroupsofcytochromecperoxidaseisshown(ingreen)togetherwiththecloseproximityoftheboundcalciumion(greysphere).谢谢你的阅读知识就是财富丰富你的人生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
kok电子竞技:最新文档
- 江苏省东台市第三教育联盟重点名校2025年初三下学期七校联合交流生物试题含解析
- 吉林工程技术师范学院《亚洲电影文化与艺术》2023-2024学年第一学期期末试卷
- 山西省忻州一中、临汾一中、精英中学2024-2025学年高三下学期一轮质量检测试题数学试题含解析
- 山东省青岛市市南区统考市级名校2025年初三下学期8月开学语文试题含解析
- 南宁理工学院《科技文献检索与写作》2023-2024学年第二学期期末试卷
- 湛江市遂溪县2025届五年级数学第二学期期末调研模拟试题含kok电子竞技
- 山东省德州市2025届高三下学期统练(4)化学试题含解析
- 云南艺术学院文华学院《级科学道德与学术诚信》2023-2024学年第二学期期末试卷
- 辽阳市白塔区2025年三年级数学第二学期期末联考试题含解析
- 南京机电职业技术学院《工程地震与结构抗震》2023-2024学年第二学期期末试卷
- 压力容器考试审核考试题库(容标委-气体协会联合)
- 房建工程风险点台账
- 小学科学 教科版 一年级下册 《我们知道的动物》 教学设计
- 变频器启动控制方法
- 外科学教案-腹外疝
- 飞秒激光加工技术ppt课件(PPT 31页)
- 酒店式公寓装饰工程施工专项方案(126页)
- 小学音乐国测(国家义务教育质量监测)复习内容
- 茶艺-认识茶具(课堂PPT)
- 生物药物监测检测报告.docx
- 钢丝绳理论重量计算方式
评论
0/150
提交评论