




下载本文档
kok电子竞技权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
kok电子竞技:文档简介
准确率达80%以上。基于深度学习的手写识别研究三星通信研究院实习 模型实现词汇聚类和语言模型的建立,并进行优化。英语准确率达90%以上,欧洲语言准确率平均达YonghuiCong,ZengchangQin,JingYuandTaoWan.Cross-ModalInformationRetrievalACaseStudyonChineseWikipedia.InInternationalConferenceonAdvancedDataMiningandApplications2012:15-26.EIJingYu,YonghuiCongZengchangQinandTaoWan.Cross-ModalTopicCorrelationsforMultimediaRetrieval.InInternationalConferenceonPatternRecognition,2012:246-249.(EI检索,已发表),TopicCorrelationModelforCross-ModalMultimediaInformationRetrievalPatternAnalysisandApplications(SCI检索,在审,第三作者)(NMOE院校级奖项A类,北航专业二等奖学Yonghui TEL: 2012.9-BeihangUniversity,Master,MachineLearning,Intelligentcomputingandmachinelearning2008.9-Familiarwithalgorithmsaboutcomputervision,andimageprocessing,includingcontent-basedimageretrieval,cross-modalinformationretrievalandimagefeatureextraction.Ihavealgorithmdevelopmentexperiencesondesigningpracticalproject.Familiarwithnaturallanguageprocessingalgorithmssuchastextmodeling,semanticunderstandinganalysis,syntacticstructure,topicmodelandlanguagemodel.Familiarwithbasicalgorithmsondataminingandmachinelearning,includingnaiveBayesclassifier,SVM,Adaboost,PCA,K-meansetc.Ihavemathematicsfoundationsonstatistics,probabilitytheory,matrixtheoryandsoon.FamiliarwithC/C++,Matlab,Python,OpenCVandLinuxdevelopmentenvironment.,understandingPerl,ShellandVisiblecomponentsDetectionofUrineSedimentInternshipinSiemensCTDescription:visiblecomponentsDetectionofUrineSediment.Mainlyresponsibleforresearchandanalysisonfeatureextractionandclassificationalgorithmsforcastcells.SIFT,LBP,HOGfeaturesandSVM,Adaboostclassifiersareusedintheproject.Ihavecompletedavalidclassificationoncastcells,theaccuracyrategetsupto80%.Matlab,PythonandOpenCVaremainlyused.HandwritingRecognitionBeijingSamsungTechnology Description:HandwritingRecognition.MainlyresponsiblefortrainingandoptimizationoflanguageUsingthen-gramandn-classalgorithmforwordclusteringandtraininglanguagemodel.ImprovingtheaccuracyofhandwritingrecognitionbymodifyingtheclusteringalgorithmandcombiningHTKandacousticmodel.OptimizationthelanguagemodelwithHLRescorewhichimprovestheresultby20%.C++,pythonaremainlyused.Cross-modalinformationretrievalbasedonprobability Description:Implementingcross-modalinformationretrievalviaaninputmediaform(suchasimages),toretrieveotherformsofmedia(suchastext)whichdescribesthesamecontent.IwasprimarilyresponsiblefortheexperimentsontheEnglishdatabase.IestablishedaChinesedatabasewithimagesandtexts,extractedimagefeaturesandtrainedtopicmodelbasedonwordsandcharactersrespectively.SIFTfeature,LDAandSVMaremainlyusedintheproject.Wehavebuildanovelprobabilitymodelbasedonclassinformation.ThisisthefirstChinesecaserealizingcross-modalinformationretrieval,andgettingabetterretrievalperformance.ThemainprogramlanguagesusedareMatlabandPython.TopicModelingonChinese 2013Description:AsChinesedifferentfromotherwesternlanguages,weanalyzethesyntacticandsemanticsstructureoftheChineselanguage.WeanalyzetopicdistributionbasedonChinesewordsandcharactersasthebasicunitandestablishthemappingrelationshipbetweencharactersandwords,inordertoestablishamoreeffectivesemanticmodel.Theworkisprocessedasthreeperiods:buildingtherelationshipbetweenwordsandcharacters;placingassymetricpriorbeforethedocument-topicdistributionandtopic-worddistribution;improvingthetopicmodelbasedonn-gramandclassinformation.MainlyusingLDAandGibbsSamplingandn-gramalgorithm.Wehaveverifiedthatthecharacter-basedLDAcanbemoreeffectivethantheword-basedLDA,andestablishedanimprovedtopicmodelbasedontheChinesecharacter-wordrelationshipandn-gram.Theeffectivenessofmodelhavebeentestified.ThemainlanguageisPythonandMatlab.YonghuiCong,ZengchangQin,JingYuandTaoWan.Cross-ModalInformationRetrieval-ACaseStudyonChineseWikipedia.InternationalConferenceonAdvancedDataMiningandApplications,2012:15-26.(EI)JingYu,YonghuiCong,ZengchangQinandTaoWan.Cross-ModalTopicCorrelationsforMultimediaRetrieval.InternationalConferenceonPatternRecognition,2012:246-249.English
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
kok电子竞技:最新文档
- 2025年家庭教育测试试题及答案
- 2025年江苏编制笔试题库及答案
- 2025年科学师范面试试题及答案
- 2025年病理操作面试题及答案
- 2025年初二的测试题及答案
- 2025年生物面试题型及答案高中
- 2025年城管笔试题库及答案
- 2025年新能源品牌测试题及答案
- 2025年十五冶招聘考试试题及答案
- 2025年拗音浊音考试题及答案
- 智能网联汽车第三章毫米波雷达课件
- 2024年宜春职业技术学院单招职业适应性测试题库完美kok电子竞技
- 标准B级机房建设方案
- 项目四任务一《三股辫我会编》(课件)浙教kok电子竞技二kok电子竞技下册综合实践活动
- 个人房产证明格式合集
- 《社区康复》课件-第三章 社区康复的实施
- 奥美医疗销售产品册
- 租金评估技术kok电子竞技范文模kok电子竞技
- 电子kok电子竞技土地转让协议书
- 钢筋焊接工艺性试验方案样本
- 统编kok电子竞技语文四kok电子竞技下册9 短诗三首 课件
评论
0/150
提交评论