2024届湖南省宁乡一中高一数学第二学期期末监测试题含解析_第1页
2024届湖南省宁乡一中高一数学第二学期期末监测试题含解析_第2页
2024届湖南省宁乡一中高一数学第二学期期末监测试题含解析_第3页
2024届湖南省宁乡一中高一数学第二学期期末监测试题含解析_第4页
2024届湖南省宁乡一中高一数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩11页未读, 继续免费阅读

下载本文档

kok电子竞技权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

kok电子竞技:文档简介

2024届湖南省宁乡一中高一数学第二学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知的顶点坐标为,,,则边上的中线的长为()A. B. C. D.2.圆与圆的位置关系是()A.相离 B.相交 C.相切 D.内含3.在中,已知角的对边分别为,若,,,,且,则的最小角的余弦值为()A. B. C. D.4.已知等差数列an的前n项和为Sn,若S1=1,A.32 B.54 C.5.若点在点的北偏东70°,点在点的南偏东30°,且,则点在点的()方向上.A.北偏东20° B.北偏东30° C.北偏西30° D.北偏西15°6.如图,长方体的体积为,E为棱上的点,且,三棱锥E-BCD的体积为,则=()A. B. C. D.7.已知函数f(x)=2x+log2x,且实数a>b>c>0,满足A.x0<a B.x0>a8.函数的单调增区间是()A. B.C. D.9.设等比数列的前项和为,且,则()A. B. C. D.10.在中,角的对边分别为.若,,,则边的大小为()A.3 B.2 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是以为首项,为公差的等差数列,是其前项和,则数列的最小项为第___项12.正方体中,异面直线和所成角的余弦值是________.13.若把写成的形式,则______.14.已知函数fx=cosx+2cosx,15.若直线l1:ax+3y+1=0与l2:2x+(a+1)y+1=0互相平行,则a的值为________.16.在中,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.“我将来要当一名麦田里的守望者,有那么一群孩子在一块麦田里玩,几千万的小孩子,附近没有一个大人,我是说……除了我”《麦田里的守望者》中的主人公霍尔顿将自己的精神生活寄托于那广阔无垠的麦田.假设霍尔顿在一块成凸四边形的麦田里成为守望者,如图所示,为了分割麦田,他将连接,设中边所对的角为,中边所对的角为,经测量已知,.(1)霍尔顿发现无论多长,为一个定值,请你验证霍尔顿的结论,并求出这个定值;(2)霍尔顿发现麦田的生长于土地面积的平方呈正相关,记与的面积分别为和,为了更好地规划麦田,请你帮助霍尔顿求出的最大值.18.已知向量满足,且向量与的夹角为.(1)求的值;(2)求.19.已知向量.(1)求函数的解析式及在区间上的值域;(2)求满足不等式的的集合.20.已知数列满足,();(1)求、、;(2)猜想数列的通项公式;(3)用数学归纳法证明你的猜想;21.如右图,某货轮在A处看灯塔B在货轮的北偏东75°,距离为nmile,在A处看灯塔C在货轮的北偏西30°,距离为nmile,货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°,求:(1)A处与D处的距离;(2)灯塔C与D处的距离.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

利用中点坐标公式求得,再利用两点间距离公式求得结果.【题目详解】由,可得中点又本题正确选项:【题目点拨】本题考查两点间距离公式的应用,关键是能够利用中点坐标公式求得中点坐标.2、B【解题分析】

计算圆心距,判断与半径和差的关系得到位置关系.【题目详解】圆心距相交故答案选B【题目点拨】本题考查了两圆的位置关系,判断圆心距与半径和差的关系是解题的关键.3、D【解题分析】

利用余弦定理求出和的表达式,由,结合正弦定理得出的表达式,利用余弦定理得出的表达式,可解出的值,于此确定三边长,再利用大边对大角定理得出为最小角,从而求出.【题目详解】,由正弦定理,即,,,,解得,由大边对大角定理可知角是最小角,所以,,故选D.【题目点拨】本题考查正弦定理和余弦定理的应用,考查大边对大角定理,在解题时,要充分结合题中的已知条件选择正弦定理和余弦定理进行求解,考查计算能力,属于中等题.4、C【解题分析】

利用前n项和Sn的性质可求S【题目详解】设Sna+b=116a+4b=16a+8b,故a=1b=0,故S6【题目点拨】一般地,如果an为等差数列,Sn为其前(1)若m,n,p,q∈N*,m+n=p+q,则am(2)Sn=n(3)Sn=An(4)Sn5、A【解题分析】

作出方位角,根据等腰三角形的性质可得.【题目详解】如图,,,则,∵,∴,而,∴∴点在点的北偏东20°方向上.故。篈.【题目点拨】本题考查方位角概念,掌握方位角的定义是解题基。轿唤鞘且阅媳毕蛭。逼,北偏西,南偏东,南偏西等等.6、D【解题分析】

分别求出长方体和三棱锥E-BCD的体积,即可求出答案.【题目详解】由题意,,,则.故选D.【题目点拨】本题考查了长方体与三棱锥的体积的计算,考查了学生的计算能力,属于基础题.7、D【解题分析】

由函数的单调性可得:当x0<c时,函数的单调性可得:f(a)>0,f(b)>0,f(c)>0,即不满足f(a)f(b)f(c)【题目详解】因为函数f(x)=2则函数y=f(x)在(0,+∞)为增函数,又实数a>b>c>0,满足f(a)f(b)f(c)<0,则f(a),f(b),f(c)为负数的个数为奇数,对于选项A,B,C选项可能成立,对于选项D,当x0函数的单调性可得:f(a)>0,f(b)>0,f(c)>0,即不满足f(a)f(b)f(c)<0,故选项D不可能成立,故。篋.【题目点拨】本题考查了函数的单调性,属于中档题.8、D【解题分析】

化简函数可得y=2sin(2x),把“2x”作为一个整体,再根据正弦函数的单调增区间,求出x的范围,即是所求函数的增区间.【题目详解】,由2kπ≤2x2kπ得,kπx≤kπ(k∈z),∴函数的单调增区间是[kπ,kπ](k∈z),故选D.【题目点拨】本题考查了正弦函数的单调性应用,一般的做法是利用整体思想,根据正弦函数(余弦函数)的性质进行求解.9、C【解题分析】

由,,联立方程组,求出等比数列的首项和公比,然后求.【题目详解】解:若,则,显然不成立,所以.由,,得,,所以,所以公比.所以.或者利用,所以.故。篊.【题目点拨】本题主要考查等比数列的前项和公式的应用,要求熟练掌握,特别要注意对公比是否等于1要进行讨论,属于基础题.10、A【解题分析】

直接利用余弦定理可得所求.【题目详解】因为,所以,解得或(舍).故选A.【题目点拨】本题主要考查了余弦定理在解三角形中的应用,考查了一元二次方程的解法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

先求,利用二次函数性质求最值即可【题目详解】由题当时最小故答案为8【题目点拨】本题考查等差数列的求和公式,考查二次函数求最值,是基础题12、【解题分析】

由,可得异面直线和所成的角,利用直角三角形的性质可得结果.【题目详解】因为,所以异面直线和所成角,设正方体的棱长为,则直角三角形中,,,故答案为.【题目点拨】本题主要考查异面直线所成的角,属于中档题题.求异面直线所成的角的角,先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.13、【解题分析】

将角度化成弧度,再用象限角的表示方法求解即可.【题目详解】解:.故答案为:.【题目点拨】本题考查弧度与角度的互化,象限角的表示,属于基础题.14、(0,1)【解题分析】

画出函数f(x)在x∈0,2【题目详解】解:画出函数y=cosx+2|cosx|=3cos以及直线y=k的图象,如图所示;由f(x)的图象与直线y=k有且仅有四个不同的交点,可得0<k<1.故答案为:(0,1).【题目点拨】本题主要考查利用分段函数及三角函数的性质求参数,数形结合是解题的关键.15、-3【解题分析】试题分析:由两直线平行可得:,经检验可知时两直线重合,所以.考点:直线平行的判定.16、【解题分析】

由已知求得,进一步求得,即可求出.【题目详解】由,得,即,,则,,,则.【题目点拨】本题主要考查应用两角和的正切公式作三角函数的恒等变换与化简求值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)在和中分别对使用余弦定理,可推出与的关系,即可得出是一个定值;(2)求出的表达式,利用二次函数的基本性质以及余弦函数值的取范围,可得出的最大值.【题目详解】(1)在中,由余弦定理得,在中,由余弦定理得,,则,;(2),,则,由(1)知:,代入上式得:,配方得:,当时,取到最大值.【题目点拨】本题考查余弦定理的应用、三角形面积的求法以及二次函数最值的求解,解题的关键就是利用题中结论将问题转化为二次函数来求解,考查运算求解能力,属于中等题.18、(1)(2)【解题分析】

(1)根据,得到,再由题中数据,即可求出结果;(2)根据向量数量积的运算法则,以及(1)的结果,即可得出结果.【题目详解】解:(1)因为,所以,即.因为,且向量与的夹角为,所以,即.(2)由(1)可得.【题目点拨】本题主要考查平面向量的数量积,熟记模的计算公式,以及向量数量积的运算法则即可,属于常考题型.19、(1),值域为(2)【解题分析】

(1)根据向量的数量积,得到函数解析式,再根据正弦函数的性质,即可得出结果;(2)先由题意,将不等式化为,结合正弦函数的性质,即可得出结果.【题目详解】解:(1),由,得,,,在区间上的值域为(2)由,得,即所以解得,的解集为【题目点拨】本题主要考查正弦型函数的值域,以及三角不等式,熟记正弦函数的性质即可,属于常考题型.20、(1),,;(2);(3)证明见解析;【解题分析】

(1)根据数列的递推关系式,代入运算,即可求解、、;(2)由(1)可猜想得;(3)利用数学归纳法,即可证得猜想是正确的.【题目详解】(1)由题意,数列满足,();所以,,;(2)由(1)可猜想得;(3)①当时,,上式成立;②假设当时,成立,则当时,由①②可得,当时,成立,即数列的通项公式为.【题目点拨】本题主要考查了数列的递推关系式的应用,以及数学归纳法的证明,其中解答中根据数列的递推公式,准确计算,同时熟记数学归纳法的证明方法是解答的关键,着重考查了推理与论证能力,属于基础题.21、(1)24;(2)8【解题分析】

(1)利用已知条件,利用正弦定理求得AD的长.(2)在△ADC中由余弦定理可求得CD,答案可得.【题目详解】(1)在△ABD中,由已知得∠ADB=60°,B=45°由正弦定理得(2)在△ADC中,由余弦定理得CD2=AD2+AC2﹣2AD?ACcos30°,解得CD=.所以A处与D处之间的距离为24nmile,灯塔C与D处之间的距离为nmile.【题目点拨】点睛:解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论