贵州省黔西南州、黔东南州、黔南州2024届数学八kok电子竞技第二学期期末达标检测试题含解析_第1页
贵州省黔西南州、黔东南州、黔南州2024届数学八kok电子竞技第二学期期末达标检测试题含解析_第2页
贵州省黔西南州、黔东南州、黔南州2024届数学八kok电子竞技第二学期期末达标检测试题含解析_第3页
贵州省黔西南州、黔东南州、黔南州2024届数学八kok电子竞技第二学期期末达标检测试题含解析_第4页
贵州省黔西南州、黔东南州、黔南州2024届数学八kok电子竞技第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩18页未读, 继续免费阅读

下载本文档

kok电子竞技权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

kok电子竞技:文档简介

贵州省黔西南州、黔东南州、黔南州2024届数学八kok电子竞技第二学期期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列各式从左到右的变形中,是因式分解的是()A. B.C. D.2.由线段a、b、c组成的三角形不是直角三角形的是A.,, B.,,C.,, D.,,3.在平面直角坐标系中,若一图形各点的纵坐标不变,横坐标分别减5,则图形与原图形相比()A.向右平移了5个单位长度 B.向左平移了5个单位长度C.向上平移了5个单位长度 D.向下平移了5个单位长度4.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.三条边相等的四边形是菱形D.三个角是直角的四边形是矩形5.平行四边形、矩形、菱形、正方形都具有的是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线互相垂直且相等6.抛物线()的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是,下列结论是:①;②;③方程有两个不相等的实数根;④;⑤若点在该抛物线上,则,其中正确的个数有()A.1个 B.2个 C.3个 D.4个7.数据2,3,5,5,4的众数是().A.2 B.3 C.4 D.58.等腰三角形的两条边长分别为2和5,那么这个三角形的周长为()A.4+5 B.2+10C.4+5或2+10 D.4+109.如图,△ABC三边的长分别为3、4、5,点D、E、F分别是△ABC各边中点,则△DEF的周长和面积分别为()A.6,3 B.6,4 C.6, D.4,610.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC二、填空题(每小题3分,共24分)11.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.12.关于的一元二次方程x2+mx-6=0的一个根为2,则另一个根是.13.如图,在矩形纸片ABCD中,AB=6cm,BC=8cm,将矩形纸片折叠,使点B与点D重合,那么△DCF的周长是___cm.14.如图,在边长为2的正方形ABCD的外部作,且,连接DE、BF、BD,则________.15.菱形ABCD的边AB为5cm,对角线AC为8cm,则菱形ABCD的面积为_____cm1.16.如图,在己知的中,按以一下步骤作图:①分别以为圆心,大于的长为半径作。嘟挥诹降;②作直线交于点,连接.若,,则的度数为___________.17.如图,在平面直角坐标系xOy中,有两点A(2,4),B(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B'.若B'的坐标为(2,0),则点A'的坐标为_____.18.已知关于的方程,如果设,那么原方程化为关于的方程是____.三、解答题(共66分)19.(10分)某剧院的观众席的座位为扇形,且按下列分式设置:排数(x)

1

2

3

4

座位数(y)

50

53

56

59

(1)按照上表所示的规律,当x每增加1时,y如何变化?(2)写出座位数y与排数x之间的关系式;(3)按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.20.(6分)已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后得到直线l,与反比例函数的图象交于点B(6,m),求m的值和直线l的解析式;(3)在(2)中的直线l与x轴、y轴分别交于C、D,求四边形OABC的面积.21.(6分)如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm.求:(1)FC的长;(2)EF的长.22.(8分)(1)计算(2)计算.23.(8分)如图①,点是正方形内一点,,连结,延长交直线于点.(1)求证:;(2)求证:是等腰三角形;(3)若是正方形外一点,其余条件不变,请你画出图形并猜想(1)和(2)中的结论是否仍然成立.(直接写出结论即可).24.(8分)在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边△APE,连接CE.(1)如图1,当点P在菱形ABCD内部时,则BP与CE的数量关系是,CE与AD的位置关系是.(2)如图2,当点P在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)如图2,连接BE,若AB=2,BE=2,求AP的长.25.(10分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从C市运往B市的救灾物资为x吨.(1)请填写下表;(2)设C、D两市的总运费为W元,求W与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从C市到B市的路况得到了改善,缩短了运输时间,运费每吨减少n元(n>0),其余路线运费不变,若C、D两市的总运费的最小值不小于10080元,求n的取值范围.26.(10分)如图,在直角△ABC中,∠BAC=90°,AB=8,AC=1.(1)尺规作图:在BC上求作一点P,使点P到点A、B的距离相等;(保留作图痕迹,不写作法和证明)(2)在(1)的条件下,连接AP,求△APC的周长.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【题目详解】解:A、不是因式分解,故A错误;B、是整式乘法,故B错误;C、,故C错误;D、,故D正确;故。篋.【题目点拨】本题考查了因式分解的意义,关键是熟练掌握定义,区别开整式的乘除运算.2、D【解题分析】

A、72+242=252,符合勾股定理的逆定理,是直角三角形;

B、42+52=()2,符合勾股定理的逆定理,是直角三角形;

C、12+()2=()2,符合勾股定理的逆定理,是直角三角形;

D、()2+()2≠()2,不符合勾股定理的逆定理,不是直角三角形.

故选D.3、B【解题分析】因为纵坐标不变,横坐标减5,相当于点向左平移了5个单位,故选B.4、D【解题分析】

由矩形和菱形的判定方法得出选项A、B、C错误,选项D正确.【题目详解】A、∵对角线互相垂直平分的四边形是菱形,∴选项A错误;B、∵对角线互相平分且相等的四边形是矩形,∴选项B错误;C、∵四条边相等的四边形是菱形,∴选项C错误;D、∵三个角是直角的四边形是矩形,∴选项D正确;故。篋.【题目点拨】本题考查了矩形的判定方法、菱形的判定方法;熟记矩形和菱形的判定方法是解决问题的关键.5、A【解题分析】试题分析:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.故选A.考点:特殊四边形的性质6、D【解题分析】

根据二次函数的对称性补全图像,再根据二次函数的性质即可求解.【题目详解】如图,∵与轴的一个交点坐标为,抛物线的对称轴是,实验求出二次函数与x轴的另一个交点为(-2,0)故可补全图像如下,由图可知a<0,c>0,对称轴x=1,故b>0,∴,①错误,②对称轴x=1,故x=-,∴,正确;③如图,作y=2图像,与函数有两个交点,∴方程有两个不相等的实数根,正确;④∵x=-2时,y=0,即,正确;⑤∵抛物线的对称轴为x=1,故点在该抛物线上,则,正确;故选D【题目点拨】此题主要考查二次函数的图像,解题的关键是熟知二次函数的对称性.7、D【解题分析】

由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【题目详解】解:∵1是这组数据中出现次数最多的数据,

∴这组数据的众数为1.

故。篋.【题目点拨】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.8、B【解题分析】∵该图形为等腰三角形,∴有两边相等.假设腰长为2,∵2+2<5,∴不符合三角形的三边关系,故此情况不成立.假设腰长为5,∵2+5﹥5,∴满足三角形的三边关系,成立,∴三角形的周长为2+10.综上所述:这个三角形的周长为2+10.故选B.点睛:此题主要考查了实数的运算、三角形的三边关系及等腰三角形的性质,解决本题的关键是注意对等腰三角形的边进行讨论.9、C【解题分析】分析:利用三角形中位线定理可知:△DEF∽△ABC,根据其相似比即可计算出△DEF的周长和面积.详解:∵点D、E、F分别是△ABC各边中点,∴△DEF∽△ABC,相似比为:.∴△DEF的周长=的周长=.∵△ABC三边的长分别为3、4、5,∴△ABC是直角三角形.∴△DEF的面积=的面积=.故。篊.点睛:本题主要考查了相似三角形.关键在于根据三角形的中位线定理得出两三角形相似,并得出相似比.10、B【解题分析】分析:根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.详解:添加的条件是AC=BD.理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.故选B.点睛:本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形.二、填空题(每小题3分,共24分)11、1【解题分析】

连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.【题目详解】连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE=,∴△BEQ周长的最小值=DE+BE=5+1=1.故答案为1.考点:本题考查的是轴对称-最短路线问题,熟知轴对称的性质是解答此题的关键.12、-1【解题分析】试题分析:因为方程x2+mx-6=0的一个根为2,所以设方程另一个根x,由根与系数的关系可得:2x=-6,所以x=-1.考点:根与系数的关系13、1.【解题分析】

根据翻转变换的性质得到BF=DF,根据三角形的周长公式计算即可.【题目详解】由翻转变换的性质可知,BF=DF,则△DCF的周长=DF+CF+CD=BF+CF+CD=BC+CD=1cm,故答案为:1.【题目点拨】本题考查的是翻转变换的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.14、1【解题分析】

连接BE,DF交于点O,由题意可证△AEB≌△AFD,可得∠AFD=∠AEB,可证∠EOF=90°,由勾股定理可求解.【题目详解】如图,连接BE、DF交于点O.∵四边形ABCD是正方形,∴,.∵是等腰直角三角形,∴,,∴.在和△中,∵,,,∴,∴.∵,∴,∴,,,,∴.故答案为1.【题目点拨】本题考查了正方形的性质,勾股定理,全等三角形判定和性质,添加恰当的辅助线构造直角三角形是本题的关键.15、14【解题分析】【分析】连接BD.利用菱形性质得BD=1OB,OA=AC,利用勾股定理求OB,通过对角线求菱形面积.【题目详解】连接BD.AC⊥BD,因为,四边形ABCD是菱形,所以,AC⊥BD,BD=1OB,OA=AC=4cm,所以,再Rt△AOB中,OB=cm,所以,BD=1OB=6cm所以,菱形的面积是cm1故答案为:14【题目点拨】本题考核知识点:菱形的性质.解题关键点:利用勾股定理求菱形的对角线.16、105°【解题分析】

根据垂直平分线的性质,可知,BD=CD,进而,求得∠BCD的度数,由,,可知,∠ACD=80°,即可得到结果.【题目详解】根据尺规作图,可知,MN是线段BC的中垂线,∴BD=CD,∴∠B=∠BCD,又∵,∴∠A=∠ADC=50°,∵∠B+∠BCD=∠ADC=50°,∴∠BCD==25°,∵∠ACD=180°-∠A-∠ADC=180°-50°-50°=80°,∴=∠BCD+∠ACD=25°+80°=105°.【题目点拨】本题主要考查垂直平分线的性质定理以及等腰三角形的性质定理与三角形外角的性质,求出各个角的度数,是解题的关键.17、(1,2)【解题分析】

根据位似变换的性质,坐标与图形性质计算.【题目详解】点B的坐标为(4,0),以原点O为位似中心,把△OAB缩小得到△OA'B',B'的坐标为(2,0),

∴以原点O为位似中心,把△OAB缩小12,得到△OA'B',

∵点A的坐标为(2,4),

∴点A'的坐标为(2×12,4×12),即(1,2),

故答案是:(1【题目点拨】考查的是位似变换,坐标与图形性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.18、.【解题分析】

先根据得到,再代入原方程进行换元即可.【题目详解】由,可得∴原方程化为3y+故答案为:3y+.【题目点拨】本题主要考查了换元法解分式方程,换元的实质是转化,将复杂问题简单化.常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,用一个字母来代替它可以简化问题,有时候要通过变形才能换元.三、解答题(共66分)19、(1)当x每增加1时,y增加3;(2)y=3x+47;(3)不可能;理由见解析.【解题分析】

(1)根据表格可得:后面的一排比前面的多3个座位;(2)根据表格信息求出函数解析式;(3)将y=90代入函数解析式,求出x的值,看x是否是整数.【题目详解】(1)当排数x每增加1时,座位y增加3.(2)由题意得:(x为正整数);(3)当时,解得因为x为正整数,所以此方程无解.即某一排不可能有90个座位.【题目点拨】本题主要考查的就是一次函数的实际应用,属于基础题型.解决这个问题的关键就是利用待定系数法求出一次函数的解析式.20、(1)正比例函数的解析式为y=x,反比例函数的解析式为y=;(2)直线l的解析式为y=x;(3)S四边形OABC=.【解题分析】

(1)利用待定系数法,由正比例函数和反比例函数的图象都经过点A(3,3),即可求得解析式;

(2)由点B在反比例函数图象上,即可求得m的值;又由此一次函数是正比例函数平移得到的,可知一次函数与反比例函数的比例系数相同,代入点B的坐标即可求得解析式;

(3)构造直角梯形AEFD,则通过求解△ABE、△BDF与直角梯形ADFE的面积即可求得△ABD的面积.【题目详解】(1)设正比例函数的解析式为y=ax,反比例函数的解析式为y=,

∵正比例函数和反比例函数的图象都经过点A(3,3),

∴3=3a,3=,

∴a=1,b=9,

∴正比例函数的解析式为y=x,反比例函数的解析式为y=;(2)∵点B在反比例函数上,

∴m==,

∴B点的坐标为(6,),

∵直线BD是直线OA平移后所得的直线,

∴可设直线BD的解析式为y=x+c,

∴=6+c,

∴c=,

∴直线l的解析式为y=x;

(3)过点A作AE∥x轴,交直线l于点E,连接AC.

∵直线l的解析式为y=x,A(3,3),

∴点E的坐标为(,3),点C的坐标为(,0).

∴AE=?3=,OC=,

∴S四边形OABC=S△OAC+S△ACE?S△ABE=××3+××3?××=.【题目点拨】本题考查反比例函数与一次函数的交点问题,解题的关键是掌握待定系数法求解析式和反比例函数与一次函数的交点问题.21、(1)4cm;(2)5cm.【解题分析】

(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,由勾股定理即可得出结论;(2)由于EF=DE,可设EF的长为x.在Rt△EFC中,利用勾股定理即可得出结论.【题目详解】(1)由题意可得:AF=AD=10cm.在Rt△ABF中,∵AB=8cm,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4(cm).(2)由题意可得:EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得:x=5,即EF的长为5cm.【题目点拨】本题考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.22、(1)(2)1【解题分析】

(1)先进行分母有理化,然后进行加减运算.(2)根据乘法分配律及二次根式的性质即可求解.【题目详解】(1)====(2)=+=3+9=1.【题目点拨】本题考查了二次根式的混合运算,熟练运用二次根式混合运算法则是解题的关键.23、(1)详见解析;(2)详见解析;(3)图详见解析,(1)和(2)中的结论仍然成立.【解题分析】

(1)由等腰三角形的性质可证∠CDE=∠DCE,进而得到,然后根据“SAS”可证;(2)由全等三角形的性质可知AE=BE,从而,根据余角的性质可证∠EAF=∠AFE,可证是等腰三角形;(3)分点E在CD的右侧和点E在AB的左侧两种情况说明即可.【题目详解】(1)证明:∵四边形是正方形,∴AD=BC,.,,即;;(2)证明:,,,;,是等腰三角形.(3)(1)和(2)中的结论仍然成立.由可知点E只能在CD的右侧或AB的左侧.如图,当点E在CD的右侧时,∵四边形是正方形,∴AD=BC,.,,即;;,∵AD//BC,∴∠AFE=∠CBE,;,是等腰三角形.如图,当点E在AB的左侧时,同理可证(1)和(2)中的结论仍然成立.【题目点拨】本题考查了正方形的性质,全等三角形的判定与性质,余角的性质,平行线的性质,以及等腰三角形的判定与性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.24、(1)BP=CE,CE⊥AD;(2)结论仍然成立,理由见解析;(3)2【解题分析】

(1)由菱形ABCD和∠ABC=60°可证△ABC与△ACD是等边三角形,由等边△APE可得AP=AE,∠PAE=∠BAC=60°,减去公共角∠PAC得∠BAP=∠CAE,根据SAS可证得△BAP≌△CAE,故有BP=CE,∠ABP=∠ACE.由菱形对角线平分一组对角可证∠ABP=30°,故∠ACE=30°即CE平分∠ACD,由AC=CD等腰三角形三线合一可得CE⊥AD.(2)结论不变.证明过程同(1).(3)在Rt△AOP中,求出OA,OP即可解决问题.【题目详解】(1)BP=CE,CE⊥AD.理由:∵菱形ABCD中,∠ABC=60°∴AB=BC=CD=AD,∠ADC=∠ABC=60°∴△ABC、△ACD是等边三角形∴AB=AC,AC=CD,∠BAC=∠ACD=60°∵△APE是等边三角形∴AP=AE,∠PAE=60°∴∠BAC-∠PAC=∠PAE-∠PAC即∠BAP=∠CAE,∴△BAP≌△CAE(SAS)∴BP=CE,∠ABP=∠ACE∵BD平分∠ABC∴∠ACE=∠ABP=∠ABC=30°∴CE平分∠ACD∴CE⊥AD.故答案为BP=CE,CE⊥AD.(2)结论仍然成立.理由如下:如图,设CE交AD于H,连接AC.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°.∵△APE是等边三角形,∴AB=AC,AP=AE,∠BAC=∠PAE=60°.∴△BAP≌△CAE.∴BP=CE,∠ABP=∠ACE=30°.∵∠CAH=60°,∴∠CAH+∠ACH=90°.∴∠AHC=90°,即CE⊥AD.(3)如图,连接BE,由(2)可知CE⊥AD,BP=CE.在菱形ABCD中,AD∥BC,∴CE⊥BC.∵BC=AB=2,BE=2,在Rt△BCE中,CE==1.∴BP=CE=1.∵AC与BD是菱形的对角线,∴∠ABD=∠ABC=30°,AC⊥BD.∴OA=AB=,BO==3,∴OP=BP-BO=5,在Rt△AOP中,AP==2,【题目点拨】本题考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理.第(2)题的证明过程可由(1)适当转化而得,第(3)题则可直接运用(2)的结论解决问题.25、(1)如表见解析;(2)W=-10x+11200,;(1)【解题分析】

(1)根据题意可以将表格中的空缺数据补充完整;(2)根据题意可以求得w与x的函数关系式,并写出x的取值范围;(1)根据题意,利用分类讨论的数学思想可以解答本题.【题目详解】(1)∵C市运往B市x吨,∴C市运往A市(240-x)吨,D市运往B市(100-x)吨,D市运往A市260-(100-x)=(x-40)吨,故答案为240-x、x-40、100-x;(2)由题意可得,w=20(240-x)+25x+15(x-40)+10(100-x)=-10x+11200,又得40≤x≤240,∴w=10x+11200(40≤x≤240);(1)由题意可得,w=20(240-x)+(25-n)x+15(x-40)+10(100-x)=-(n+10)x+11200,∵n>0,∴-(n+10)<0,∴W随x的增大而减小当x取最大值240时,W最小值=-(n+10)×240+11200≥10080,即:-(n+10)×240+11200≥10080解得,n≤1,由上可得,m的取值范围是0<n≤1.【题目点拨】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答.26、(1)见解析(2)11【解题分析】

(1)作线段AB的垂直平分线交BC于点P,点P即为所求;(2)由作图可知:PA=PB,可证△PAC的周长=PA+PC+AC=PB+PC+AC=BC=BC+AC.【题目详解】(1)点P即为所求;(2)在RtABC中,AB=8,AC=1,∠BAC=90°,∴BC==10,由作图可知:PA=PB,∴△PAC的周长=PA+PC+AC=PB+PC+AC=BC=BC+AC=10+1=11.【题目点拨】本题考查作图﹣复杂作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论