




kok电子竞技权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
kok电子竞技:文档简介
北京市一七一中学2025届数学高一下期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.点关于直线的对称点的坐标为()A. B. C. D.2.为了得到函数的图像,只需把函数的图像A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位3.函数的零点所在的区间是().A. B. C. D.4.在中,,BC边上的高等于,则A. B. C. D.5.已知向量,则下列结论正确的是A. B. C.与垂直 D.6.如图2所示,程序框图的输出结果是()A.3 B.4 C.5 D.87.椭圆中以点M(1,2)为中点的弦所在直线斜率为()A. B. C. D.8.已知,且,则()A. B. C. D.9.若向量的夹角为,且,,则向量与向量的夹角为()A. B. C. D.10.已知为等差数列,,则的值为()A.3 B.2 C. D.1二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的圆心角为,半径为,则扇形的弧长为______.12.已知三棱锥,平面,,,,则三棱锥的侧面积__________.13.如图,分别沿长方形纸片和正方形纸片的对角线剪开,拼成如图所示的平行四边形,且中间的四边形为正方形.在平行四边形内随机取一点,则此点取自阴影部分的概率是______________14.已知圆,直线l被圆所截得的弦的中点为.则直线l的方程是________(用一般式直线方程表示).15.函数的最小正周期为__________.16.已知等比数列的公比为2,前n项和为,则=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C:(x-1)2(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程18.某服装店为庆祝开业“三周年”,举行为期六天的促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,第五天该服装店经理对前五天中参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:1234546102322(1)若与具有线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)预测第六天的参加抽奖活动的人数(按四舍五入取到整数).参考公式与参考数据:.19.某城市理论预测2020年到2025届人口总数与年份的关系如下表所示:年份202x(年)01234人口数y(十万)5781119(1)请在右面的坐标系中画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;(3)据此估计2025年该城市人口总数.(参考公式:,)20.已知α为锐角,且tanα=(I)求tanα+(II)求5sin21.在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求△ABC的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】令,设对称点的坐标为,可得的中点在直线上,故可得①,又可得的斜率,由垂直关系可得②,联立①②解得,即对称点的坐标为,故选D.点睛:本题考查对称问题,得出中点在直线且连线与已知直线垂直是解决问题的关键,属中档题;点关于直线成轴对称问题,由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”,利用“垂直”即斜率关系,“平分”即中点在直线上这两个条件建立方程组,就可求出对称点的坐标.2、B【解析】试题分析:记函数,则函数∵函数f(x)图象向右平移单位,可得函数的图象∴把函数的图象右平移单位,得到函数的图象,故选B.考点:函数y=Asin(ωx+φ)的图象变换.3、C【解析】
因为原函数是增函数且连续,,所以根据函数零点存在定理得到零点在区间上,故选C.4、D【解析】试题分析:设边上的高线为,则,所以.由正弦定理,知,即,解得,故选D.【考点】正弦定理【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.5、C【解析】
可按各选择支计算.【详解】由题意,,A错;,B错;,∴,C正确;∵不存在实数,使得,∴不正确,D错,故选C.【点睛】本题考查向量的数量积、向量的平行,向量的模以及向量的垂直等知识,属于基础题.6、B【解析】
由框图可知,①,满足条件,则;②,满足条件,则;③,满足条件,则;④,不满足条件,输出;故选B7、A【解析】
先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率.【详解】设弦的两端点为,,代入椭圆得,两式相减得,即,即,即,即,∴弦所在的直线的斜率为,故选A.【点睛】本题主要考查了椭圆的性质以及直线与椭圆的关系.在解决弦长的中点问题,涉及到“中点与斜率”时常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化,达到解决问题的目的,属于中档题.8、A【解析】
根据,,利用平方关系得到,再利用商数关系得到,最后用两和的正切求解.【详解】因为,,所以,所以,所以.故。篈【点睛】本题主要考查了同角三角函数基本关系式和两角和的正切公式,还考查了运算求解的能力,属于中档题.9、B【解析】
结合数量积公式可求得、、的值,代入向量夹角公式即可求解.【详解】设向量与的夹角为,因为的夹角为,且,,所以,,所以,又因为所以,故选B【点睛】本题考查向量的数量积公式,向量模、夹角的求法,考查化简计算的能力,属基础题.10、D【解析】
根据等差数列下标和性质,即可求解.【详解】因为为等差数列,故解得.故。篋.【点睛】本题考查等差数列下标和性质,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、9【解析】
由扇形的弧长公式运算可得解.【详解】解:由扇形的弧长公式得:,故答案为9.【点睛】本题考查了扇形的弧长,属基础题.12、【解析】
根据题意将三棱锥放入对应长方体中,计算各个面的面积相加得到答案.【详解】三棱锥,平面,,,画出图像:易知:每个面都是直角三角形.【点睛】本题考查了三棱锥的侧面积,将三棱锥放入对应的长方体是解题的关键.13、【解析】
设正方形的边长为,正方形的边长为,分别求出阴影部分的面积和平行四边形的面积,最后利用几何概型公式求出概率.【详解】设正方形的边长为,正方形的边长为,在长方形中,,故平行四边形的面积为,阴影部分的面积为,所以在平行四边形KLMN内随机取一点,则此点取自阴影部分的概率是.【点睛】本题考查了几何概型概率的求法,求出平行四边形的面积是解题的关键.14、【解析】
将圆的方程化为标椎方程,找出圆心坐标与半径,根据垂径定理得到直线与直线垂直,根据直线的斜率求出直线的斜率,确定出直线的方程即可.【详解】由已知圆的方程可得,所以圆心,半径为3,由垂径定理知:直线直线,因为直线的斜率,所以直线的斜率,则直线的方程为,即.故答案为:.【点睛】本题考查直线与圆的位置关系,考查逻辑思维能力和运算能力,属于常考题.15、【解析】
用辅助角公式把函数解析式化成正弦型函数解析式的形式,最后利用正弦型函数的最小正周期的公式求出最小正周期.【详解】,函数的最小正周期为.【点睛】本题考查了辅助角公式,考查了正弦型函数最小正周期公式,考查了数学运算能力.16、【解析】由等比数列的定义,S4=a1+a2+a3+a4=+a2+a2q+a2q2,得+1+q+q2=.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)已知圆C:(x-1)2(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=-118、(1)(2)预测第六天的参加抽奖活动的人数为29.【解析】
(1)根据表中的数据,利用公式,分别求得的值,即可得到回归直线方程;(2)将代入回归直线方程,求得,即可作出判断,得到结论.【详解】(1)根据表中的数据,可得,,则,,又由,故所求回归直线方程为.(2)将代入中,求得,故预测第六天的参加抽奖活动的人数为29.【点睛】本题主要考查了回归直线方程的求解,以及回归直线方程的应用,其中解答中利用公式准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1)见解析;(2);(3)2025年该城市人口总数为196万人【解析】
(1)由表中数据描点即可;(2)由最小二乘法的公式得出的值,即可得出该线性方程;(3)将代入(2)中的线性方程,即可得出2025年该城市人口总数.【详解】(1)画出散点图如图所示.(2),,,,,,则线性回归方程.(3)时,(十万)(万).答:估计2025年该城市人口总数为196万人【点睛】本题主要考查了绘制散点图,求回归直线方程以及根据回归方程进行数据估计,属于中档题.20、(I)tanα+π【解析】试题分析:(1)根据两角和差的正切公式,将式子展开,根据题干中的条件代入即可;(2)这是其次式的考查,上下同除以cosα(I)tanα+(II)因为tanα=1521、(1)(2)21【解析】
(1)由,求得,再由正弦定理,即可求解.(2)由(1)和,求得,再由三角形的面积公式,即可求解.【详解】(1)由题意,因为,且为三角形的内角,所以,由正弦定理,可得,即,解得.(2)由(1)和,则,由三角形的面积公式,可得.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
kok电子竞技:最新文档
- 服装质押合同范本
- 修复窑洞合同范本
- rel-Cleroindicin-F-Rengyolone-生命科学试剂-MCE
- PF-06767832-生命科学试剂-MCE
- 2025晶益通(四川)半导体科技有限公司招聘166人笔试参考题库附带答案详解
- Mephetyl-tetrazole-生命科学试剂-MCE
- BIHC-生命科学试剂-MCE
- 班级团队目标设定与执行策略
- 农田收购合同范本
- 知识产在企业文化建设中的价值体现
- 2025年湖南高速铁路职业技术学院单招职业倾向性测试题库附答案
- 《高铁乘务安全管理与应急处置(第3kok电子竞技)》全套教学课件
- 学校食品安全长效管理制度
- 2.2 说话要算数 第二课时 课件2024-2025学年四kok电子竞技下册道德与法治 统编kok电子竞技
- 2024-2025年第二学期学校教导处工作计划(二)
- 2025年苏州卫生职业技术学院高职单招职业技能测试近5年常考kok电子竞技参考题库含答案解析
- 2025年南京机电职业技术学院高职单招数学历年(2016-2024)频考点试题含答案解析
- 二零二五年度博物馆场地租赁与文物保护合作协议3篇
- 2025年春新人教kok电子竞技历史七kok电子竞技下册全册课件
- 活在课堂里 课件
- 教科kok电子竞技五kok电子竞技下册科学同步练习全册
评论
0/150
提交评论