kok电子竞技权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
kok电子竞技:文档简介
2025届辽宁省沈阳市于洪区数学八kok电子竞技第一学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若a-2b=1,则代数式a2-2ab-2b的值为()A.-1 B.0 C.1 D.22.下列各组数据分别是三角形的三边长,其中不能构成直角三角形的是()A. B.C. D.3.下列结论正确的是()A.有两个锐角相等的两个直角三角形全等; B.顶角和底边对应相等的两个等腰三角形全等C.一条斜边对应相等的两个直角三角形全等; D.两个等边三角形全等.4.如图,四边形OABC为长方形,点A在x轴上,点C在y轴上,B点坐标为(8,6),将沿OB翻折,A的对应点为E,OE交BC于点D,则D点的坐标为()A.(,6) B.(,6) C.(,6) D.(,6)5.在实数中,无理数有()A.0个 B.1个 C.2个 D.3个6.下面计算正确的是()A. B.C. D.7.如图,五边形ABCDE中,AB∥CD,则图中x的值是()A.75° B.65° C.60° D.55°8.4的算术平方根是()A. B.2 C.±2 D.±9.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=7,点E在边BC上,并且CE=2,点F为边AC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是()A.0.5 B.1 C.2 D.2.510.若关于的方程有增根,则的值与增根的值分别是()A., B., C., D.,11.点P(-2,3)到x轴的距离是()A.2 B.3 C. D.512.已知,,那么的值是()A.11 B.16 C.60 D.150二、填空题(每题4分,共24分)13.若分式方程=a无解,则a的值为________.14.已知长为、宽为的长方形的周长为16,面积为15,则__________.15.命题“面积相等的三角形全等”的逆命题是__________.16.如图,在中,是边上一点,且在的垂直平分线上,若,,则_________.17.如图,点在同一直线上,平分,,若,则__________(用关于的代数式表示).18.点在第四象限内,点到轴的距离是1,到轴的距离是2,那么点的坐标为_______.三、解答题(共78分)19.(8分)请你先化简:,然后从中选一个合适的整数作为x的值代入求值.20.(8分)证明:如果两个三角形有两边和其中一边上的高分别对应相等,那么这两个三角形全等.21.(8分)已知与成正比例,且时,.求y与x之间的函数关系式;若点是该函数图象上的一点,求m的值.22.(10分)如图,△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别于AB,AC交于点D,E,求∠BCD的度数.23.(10分)如图,在中,,于点,平分交于点.(1)求证:;(2)若,,求的长.24.(10分)老师在黑板上书写了一个式子的正确计算结果随后用手遮住了原式的一部分,如图.(1)求被手遮住部分的式子(最简形式);(2)原式的计算结果能等于一1吗?请说明理由.25.(12分)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?26.(1)先化简,再求值:,其中;(2)解分式方程:.
参考答案一、选择题(每题4分,共48分)1、C【分析】已知a?2b的值,将原式变形后代入计算即可求出值.【详解】解:∵a?2b=1,∴2b=a-1,∴a2-2ab-2b=a2-a(a-1)-(a-1)=a2-a2+a-a+1)=1,故。篊.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.2、D【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵52+122=169=132,∴能构成直角三角形,故本选项错误;B、∵12+12=2=()2,∴能构成直角三角形,故本选项错误;C、∵12+22=5=()2,∴能够构成直角三角形,故本选项错误;D、∵()2+22=7≠()2,∴不能构成直角三角形,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3、B【解析】试题解析:A两个锐角相等的两个直角三角形不全等,故该选项错误;B中两角夹一边对应相等,能判定全等,故该选项正确;
C一条斜边对应相等的两个直角三角形不全等,故该选项错误;
D中两个等边三角形,虽然角相等,但边长不确定,所以不能确定其全等,所以D错误.
故选B.4、D【分析】根据翻折的性质及勾股定理进行计算即可得解.【详解】∵四边形OABC为长方形,点A在x轴上,点C在y轴上,B点坐标为∴OC=AB=6,BC=OA=8,,,BC//OA∴∵将沿OB翻折,A的对应点为E∴∴∴OD=BD设CD=x,则在中,∴解得:∴点D的坐标为,故。篋.【点睛】本题主要考查了翻折的性质,熟练掌握翻折及勾股定理的计算是解决本题的关键.5、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:在实数中,无理数有,共2个.故选C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6、C【解析】A.合并同类项得到结果;B.利用同底数幂的乘法法则计算得到结果;C.利用幂的乘方与积的乘方运算法则计算得到结果;D.利用平方差公式计算得到结果,即可作出判断.【详解】A.原式=,错误;B.原式=,错误;C.原式=,正确;D.原式=,错误.故选C.【点睛】本题主要考查同底数幂的乘法,合并同类项,幂的乘方与积的乘方,平方差公式运算,熟知其运算法则是解题的关键.7、A【分析】先根据平行线的性质求得∠B的值,再根据多边形内角和定理即可求得∠E的值即可.【详解】解:∵AB∥CD,∴∠B=180°-∠C=180°-60°=120°,∵五边形ABCDE内角和为(5-2)×180°=540°,∴在五边形ABCDE中,∠E=540°-135°-120°-60°-150°=1°.故图中x的值是1.故选A.【点睛】本题主要考查了平行线的性质,多边形内角和定理,解决本题的关键是对基础知识的熟练掌握及综合运用.8、B【解析】试题分析:根据算术平方根的定义可得4的算术平方根是2,故答案选B.考点:算术平方根的定义.9、A【分析】如图所示:当PE⊥AB.由翻折的性质和直角三角形的性质即可得到即可.【详解】如图所示:当PE⊥AB,点P到边AB距离的值最。煞鄣男灾士芍:PE=EC=1.∵DE⊥AB,∴∠PDB=90°.∵∠B=30°,∴DE=BE=(7﹣1)=1.2,∴点P到边AB距离的最小值是1.2﹣1=0.2.故。篈.【点睛】此题参考翻折变换(折叠问题),直角三角形的性质,熟练掌握折叠的性质是解题的关键.10、B【解析】试题分析:分式方程去分母转化为整式方程x+2=m,由分式方程有增根,得到最简公分母x﹣2=0,即x=2,把x=2代入整式方程得:m=4,则m的值与增根x的值分别是m=4,x=2.故选B.考点:分式方程的增根.11、B【解析】直接利用点的坐标性质得出答案.【详解】点P(-2,1)到x轴的距离是:1.故选B.【点睛】此题主要考查了点的坐标,正确把握点的坐标性质是解题关键.12、D【分析】由幂的乘方、同底数幂相乘的运算法则进行计算,即可得到答案.【详解】解:∵,,∴;故。篋.【点睛】本题考查了幂的乘方、同底数幂相乘,解题的关键是掌握运算法则进行计算.二、填空题(每题4分,共24分)13、1或-1【分析】根据分式方程无解,得到最简公分母为2求出x的值,分式方程转化为整式方程,把x的值代入计算即可.【详解】解:去分母:即:.显然a=1时,方程无解.由分式方程无解,得到x+1=2,即:x=-1.把x=-1代入整式方程:-a+1=-2a.解得:a=-1.综上:a的值为1或者-1.【点睛】本题考查了分式方程的解,需要注意在任何时候考虑分母不能够为2.14、1【分析】根据长方形的周长公式和面积公式可得2(a+b)=16,ab=15,从而求出a+b=8,然后将多项式因式分解,最后代入求值即可.【详解】解:∵长为、宽为的长方形的周长为16,面积为15∴2(a+b)=16,ab=15∴a+b=8∴故答案为:1.【点睛】此题考查的是长方形的周长公式、面积公式和因式分解,掌握长方形的周长公式、面积公式和用提公因式法因式分解是解决此题的关键.15、全等三角形的面积相等【分析】将原命题的条件与结论互换即可得到其逆命题.【详解】解:∵原命题的条件是:三角形的面积相等,结论是:该三角形是全等三角形.
∴其逆命题是:全等三角形的面积相等.故答案为:全等三角形的面积相等.【点睛】本题考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题.16、33【分析】根据等腰三角形的性质,可得,由三角形内角和定理,求得,再由垂直平分线的性质,结合外角性质,可求得即得.【详解】,由三角形内角和,,在的垂直平分线上,,利用三角形外角性质,,故答案为:33.【点睛】考查了等腰三角形的性质,三角形内角和的定理,以及垂直平分线的性质和外角性质,通过关系式找到等角进行代换是解题关键,注意把几何图形的性质内容要熟记.17、(90-α)【解析】根据∠,可以得到∠EBD,再根据BF平分∠EBD,CG∥BF,即可得到∠GCD,本题得以解决.【详解】∵∠EBA=,∠EBA+∠EBD=180,
∴∠EBD,
∵BF平分∠EBD,
∴∠FBD=∠EBD=(180)=90,
∵CG∥BF,
∴∠FBD=∠GCD,
∴∠GCD=90=,
故答案为:(90-).【点睛】本题考查平行线的性质、角平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.18、(2,?1).【解析】根据点P在第四象限可知其横坐标为正,纵坐标为负即可确定P点坐标.【详解】∵点P在第四象限,∴其横、纵坐标分别为正数、负数,又∵点P到x轴的距离为1,到y轴的距离为2,∴点P的横坐标为2,纵坐标为?1.故点P的坐标为(2,?1).故答案为:(2,?1).【点睛】此题考查点的坐标,解题关键在于掌握第四象限内点的坐标特征.三、解答题(共78分)19、,当时,原式.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值(使分式的分母和除式不为0)代入进行计算即可(答案不唯一).【详解】===,当时,原式.20、见解析【分析】由HL证明Rt△ABH≌Rt△DEK得∠B=∠E,再用边角边证明△ABC≌△DEF.【详解】已知:如图所示,在△ABC和△DEF中,AB=DE,BC=EF,AH⊥BC,DK⊥EF,且AH=DK.求证:△ABC≌△DEF,证明:∵AH⊥BC,DK⊥EF,∴∠AHB=∠DKE=90°,在Rt△ABH和Rt△DEK中,,∴Rt△ABH≌Rt△DEK(HL),∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS)【点睛】本题综合考查了全等三角形的判定与性质和命题的证明方法,重点掌握全等三角形的判定与性质,难点是将命题用几何语言规范书写成几何证明格式.21、(1)(2)【分析】(1)根据y-1与x+2成正比例,设y-1=k(x+2),把x与y的值代入求出k的值,即可确定出关系式;(2)把点(2m+1,3)代入一次函数解析式,求出m的值即可.【详解】根据题意:设,把,代入得:,解得:.与x函数关系式为;把点代入得:解得.【点睛】本题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.22、10°【分析】在△ABC中,利用直角三角形两锐角互余,可得∠ACB=50°,利用MN是AC的垂直平分线,可得AD=CD,进而利用等边对等角可得∠DCA=∠A=40°,即可得出结论.【详解】∵∠B=90°,∠A=40°,∴∠ACB=50°.∵MN是线段AC的垂直平分线,∴AD=CD,∴∠DCA=∠A=40°,∴∠BCD=∠ACB﹣∠DCA=50°﹣40°=10°.【点睛】掌握并理解垂直平分线的性质.等边对等角、直角三角形两锐角互余的性质来解决问题.23、(1)证明见解析;(2)1.【分析】(1)依据∠ACB=90°,CD⊥AB,即可得到∠ACD=∠B,再根据CE平分∠BCD,可得∠BCE=∠DCE,进而得出∠AEC=∠ACE.
(2)依据∠ACD=∠BCE=∠DCE,∠ACB=90°,即可得到∠ACD=10°即可解决问题.【详解】解:(1)∵,,∴,∴.∵平分,∴,∴,即.(2)∵,,∴.又∵,,∴.又∵,∴,.∴中,,∴中,,∴.【点睛】本题考查三角形内角和定理以及角平分线的定义,含10度角直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题.24、(1);(2)不能,理由见解析【分析】(1)设被手遮住部分的式子为A,代入求值即可;(2)不能,根据分式有意义的条件证明即可.【详解】(1)设被手遮住部分的式子为A,由题意得(2)不能等于-1.由题意可得:若解得:当时,原式的除式为0,无意义.故原式的计算结果不能等于.【点睛】本题考查了分式的混合运算,掌握分式混合运算的法则、分式有意义的条件是解题的关键.25、(1)这项工程的规定时间是30天;(2)甲乙两队合作完成该工程需要18天.【分析】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意列方程即可解答;(2)求出甲、乙两队单独施工需要的时间,再根据题意列方程即可.【详解】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意,得:.解得:,经检验,是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,(天),答:甲乙两队合作完成该工程需要18天.【点睛】本题考查分式方程的应用,理解题意,根据等量关系列出方程是解题的关键.26、(1),;(2)【分析】(1)先进行化简,然后将a的值代入求解;(2)根据分式方程的解法求解.【详解】(1)原式=====当时,原式=(2)原方程可化为:方程两边乘得:检验:当时,所以原方程的解是【点睛】本题考查了分式的化简求值、解分式方程等运算,掌握运算法则是解答本题的关键.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
kok电子竞技:最新文档
- 2024年度酒店预订押金协议范本3篇
- 2024原材料运输及仓储一体化服务合同3篇
- 2024养老院老年社交活动策划与执行合同3篇
- 2024年新能源电池组装外加工合作协议3篇
- 2024年度水电工程设计与施工一体化服务合同3篇
- 《联想集团有限公司》课件
- 物业应急突发事件培训
- 建材加工合同范例
- 购房定金合同范例范例
- 瓷粉质量购买合同范例
- 幼儿园故事绘本《卖火柴的小女孩儿》课件
- 珠海市香洲区 2022-2023学年七kok电子竞技上学期期末道德与法治试题
- 仓库货物临时储存与分配计划三篇
- 期末试卷-2023-2024学年科学六kok电子竞技下册青岛kok电子竞技
- 2024年江苏省连云港市中考数学试卷
- 2024年山东临沂市恒源热力集团限公司高校毕业生招聘9人重点基础提升难、易点模拟试题(共500题)附带答案详解
- 2024专升本英语答题卡浙江省
- 医疗技术临床应用管理档案(姓名+工号)
- 直通法国-阅读与文化智慧树知到期末考试答案章节答案2024年青岛大学
- (正式kok电子竞技)JBT 11517-2024 刮板取料机
- 商务数据分析智慧树知到期末考试答案2024年
评论
0/150
提交评论