




kok电子竞技权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
kok电子竞技:文档简介
2025届淮安市重点中学高二上数学期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在上有且仅有一个极值点,则实数的取值范围为()A. B.C. D.2.某次射击比赛中,某选手射击一次击中10环的概率是,连续两次均击中10环的概率是,已知某次击中10环,则随后一次击中10环的概率是A. B.C. D.3.意大利数学家斐波那契的《算经》中记载了一个有趣的数列:1,1,2,3,5,8,13,21,34,55,89,144,……,这就是著名的斐波那契数列,该数列的前2022项中有()个奇数A.1012 B.1346C.1348 D.13504.抛物线有如下光学性质:平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为F,一条平行于y轴的光线从点射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则经点B反射后的反射光线必过点()A. B.C. D.5.某种心脏手术成功率为0.9,现采用随机模拟方法估计“3例心脏手术全部成功”的概率.先利用计算器或计算机产生09之间取整数值的随机数,由于成功率是0.9,故我们用0表示手术不成功,1,2,3,4,5,6,7,8,9表示手术成功,再以每3个随机数为一组,作为3例手术的结果.经随机模拟产生如下10组随机数:812,832,569,683,271,989,730,537,925,907,由此估计“3例心脏手术全部成功”的概率为()A.0.9 B.0.8C.0.7 D.0.66.若圆与圆外切,则()A. B.C. D.7.设平面的法向量为,平面的法向量为,若,则的值为()A.-5 B.-3C.1 D.78.已知过点A(a,0)作曲线C:y=x?ex的切线有且仅有两条,则实数a的取值范围是()A.(﹣∞,﹣4)∪(0,+∞) B.(0,+∞)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)9.若方程表示圆,则实数m的取值范围为()A B.C. D.10.某三棱锥的三视图如图所示,则该三棱锥内切球的表面积为A.B.C.D.11.如图,在直三棱柱中,且,点E为中点.若平面过点E,且平面与直线AB所成角和平面与平面所成锐二面角的大小均为30°,则这样的平面有()A.1个 B.2个C.3个 D.4个12.已知椭圆的左、右焦点分别为,为轴上一点,为正三角形,若,的中点恰好在椭圆上,则椭圆的离心率是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,则_____________14.已知直线在两坐标轴上的截距分别为,,则__________.15.已知满足的双曲线(a,b>0,c为半焦距)为黄金双曲线,则黄金双曲线的离心率为______16.已知点P是抛物线上一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为______________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前项和,且成等差数列.(1)求数列的通项公式;(2)记数列前项和,求使成立的的最小值18.(12分)某地从今年8月份开始启动12-14岁人群新冠肺炎疫苗的接种工作,共有8千人需要接种疫苗.前4周的累计接种人数统计如下表:前x周1234累计接种人数y(千人)2.5344.5(1)求y关于的线性回归方程;(2)根据(1)中所求的回归方程,预计该地第几周才能完成疫苗接种工作?参考公式:回归方程中斜率和截距的最小二乘估计公式分别为,19.(12分)在等比数列{}中,(1),,求;(2),,求的值.20.(12分)如图,在四棱锥中,平面平面,底面是菱形,E为的中点(1)证明:(2)已知,求二面角的余弦值21.(12分)在△ABC中,角A、B、C所对的边分别为a、b、c,角A、B、C的度数成等差数列,(1)若,求c的值;(2)求最大值22.(10分)如图,已知四棱台的上、下底面分别是边长为2和4的正方形,,且底面,点分别在棱、上·(1)若P是的中点,证明:;(2)若平面,二面角的余弦值为,求四面体的体积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据极值点的意义,可知函数的导函数在上有且仅有一个零点.结合零点存在定理,即可求得的取值范围.【详解】函数则因为函数在上有且仅有一个极值点即在上有且仅有一个零点根据函数零点存在定理可知满足即可代入可得解得故选:C【点睛】本题考查了函数极值点的意义,函数零点存在定理的应用,属于中档题.2、B【解析】根据条件概率的计算公式,得所求概率为,故选B.3、C【解析】由斐波那契数列的前几项分析该数列的项的奇偶规律,由此确定该数列的前2022项中的奇数的个数.【详解】由已知可得为奇数,为奇数,为偶数,因为,所以为奇数,为奇数,为偶数,…………所以为奇数,为奇数,为偶数,又故该数列的前2022项中共有1348个奇数,故。篊.4、D【解析】求出、坐标可得直线的方程,与抛物线方程联立求出,根据选项可得答案,【详解】把代入得,所以,所以直线的方程为即,与抛物线方程联立解得,所以,因为反射光线平行于y轴,根据选项可得D正确,故。篋5、B【解析】由题可知10组随机数中表示“3例心脏手术全部成功”的有8组,即求.【详解】由题意,10组随机数:812,832,569,683,271,989,730,537,925,907,表示“3例心脏手术全部成功”的有:812,832,569,683,271,989,537,925,故8个,故估计“3例心脏手术全部成功”的概率为.故。築.6、C【解析】求得两圆的圆心坐标和半径,结合两圆相外切,列出方程,即可求解.【详解】由题意,圆与圆可得,,因为两圆相外切,可得,解得故。篊.7、C【解析】根据,可知向量建立方程求解即可.【详解】由题意根据,可知向量,则有,解得.故。篊8、A【解析】设出切点,对函数求导得到切点处的斜率,由点斜式得到切线方程,化简为,整理得到方程有两个解即可,解出不等式即可.【详解】设切点为,,,则切线方程为:,切线过点代入得:,,即方程有两个解,则有或.故答案为:A.【点睛】这个题目考查了函数的导函数的求法,以及过某一点的切线方程的求法,其中应用到导数的几何意义,一般过某一点求切线方程的步骤为:一:设切点,求导并且表示在切点处的斜率;二:根据点斜式写切点处的切线方程;三:将所过的点代入切线方程,求出切点坐标;四:将切点代入切线方程,得到具体的表达式.9、D【解析】根据,解不等式即可求解.【详解】由方程表示圆,则,解得.所以实数m的取值范围为.故。篋10、A【解析】由三视图可知该几何体是一个三棱锥,根据等积法求出几何体内切球的半径,再计算内切球的表面积【详解】解:由三视图知该几何体是一个三棱锥,放入棱长为2的正方体中,如图所示:设三棱锥内切球的半径为,则由等体积法得,解得,所以该三棱锥内切球的表面积为故。篈【点睛】本题考查了由三视图求三棱锥内切球表面积的应用问题,属于中档题11、B【解析】构造出长方体,取中点连接然后利用临界位置分情况讨论即可.【详解】如图,构造出长方体,取中点,连接则所有过点与成角的平面,均与以为轴的圆锥相切,过点绕且与成角,当与水平面垂直且在面的左侧(在长方体的外面)时,与面所成角为75°(与面成45°,与成30°),过点绕旋转,转一周,90°显然最大,到了另一个边界(在面与之间)为15度,即与面所成角从75°→90°→15°→90°→75°变化,此过程中,有两次角为30
,综上,这样的平面α有2个,故。築.12、A【解析】根据题意得,取线段的中点,则根据题意得,,根据椭圆的定义可知,然后解出离心率的值.【详解】因为为正三角形,所以,取线段的中点,连结,则,所以,得,所以椭圆的离心率.故。篈.【点睛】求解离心率及其范围的问题时,解题的关键在于画出图形,根据题目中的几何条件列出关于,,的齐次式,然后得到关于离心率的方程或不等式求解二、填空题:本题共4小题,每小题5分,共20分。13、【解析】找到数列的规律,由此求得.【详解】依题意,,,所以数列是以为周期的周期数列,.故答案为:14、##【解析】根据截距定义,分别令,可得.【详解】由直线,令得,即令,得,即,故.故答案为:15、##【解析】根据题设及双曲线离心率公式可得,结合双曲线离心率的性质即可求离心率.【详解】由题设,,整理得:,所以,而,故.故答案为:.16、【解析】由抛物线的定义得:,所以,当三点共线时,最小可得答案.【详解】如图所示:,由抛物线的定义得:,所以,由图象知:当三点共线时,最。.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)10.【解析】(1)借助于将转化为,进而得到数列为等比数列,通过首项和公比求得通项公式;(2)整理数列的通项公式,可知数列为等比数列,求得前n项和,代入不等式可求得n的最小值试题解析:(1)由已知,有,即从而又因为成等差数列,即所以,解得所以,数列是首项为2,公比为2的等比数列故(2)由(1)得.所以由,得,即因为,所以.于是,使成立的n的最小值为10考点:1.数列通项公式;2.等比数列求和18、(1);(2)预计第9周才能完成接种工作【解析】(1)利用最小二乘法原理求解即可;(2)解方程即得解.【小问1详解】解:由表中数据得,,,,.所以所以y关于的线性回归方程为.【小问2详解】解:令,解得.所以预计第9周才能完成接种工作.19、(1)(2)【解析】(1)直接利用等比数列的求和公式求解即可,(2)由已知条件结合等比数的性质可得,从而可求得答案,或直接利用等比数列的求和公式化简求解【小问1详解】.【小问2详解】方法1:.∴.方法2:,整理得:又20、(1)详见解析(2)【解析】(1)利用垂直关系,转化为证明线面垂直,即可证明线线垂直;(2)利用垂直关系,建立空间直角坐标系,分别求平面和平面的法向量,利用公式,即可求解二面角的余弦值.【小问1详解】如图,取的中点,连结,,,因为,所以,因为平面平面,平面平面,所以平面,且平面,所以,又因为底面时菱形,所以,又因为点分别为的中点,所以,所以,且,所以平面,又因为平面,所以;【小问2详解】由(1)可知,平面,连结,因为,,点为的中点,所以,则两两垂直,以点为坐标原点,建立空间直角坐标系,如图所示:则,,,所以,,,,,,所以,,,设平面的法向量为,则,令,则,,故,设平面的法向量为,所以,因为二面角为锐二面角,所以二面角的余弦值为.21、(1);(2)【解析】(1)利用等差数列以及三角形内角和,正弦定理以及余弦定理求解即可;(2)利用正弦定理以及两角和与差的三角函数,结合三角函数的最值求解即可【详解】(1)由角A、B、C的度数成等差数列,得2B=A+C又,∴由正弦定理,得,即由余弦定理,得,即,解得(2)由正弦定理,得,∴,∴由,得所以当时,即时,22、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,利用空间向量的坐标运算知,即可证得结论;(2)利用空间向量结合已知的面面角余弦值可求得,再利用线面平行的已知条件求得,再将四面体视为以为底面的三棱锥,利用锥体的体积公式即可得解.【小问1详解】以为坐标原点,,,所在直线分别为,,轴建立空间直角坐标系,则,,,,设,其中,,若是的中点,则,,,于是,∴,即【小问2详解】由题设知,,,是平面内的两个不共线向量设是平面的一个法向量,则,。糜制矫娴囊桓龇ㄏ蛄渴,∴,而二面角的余弦值为,因此,解得或(舍去),此时设,而,由此得点,,∵平面,且平面的一个法向量是,∴,即,解得,从而将四面体视为以为底面的三棱锥,则其高,故四面体的体积【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
kok电子竞技:最新文档
- 湖北省鄂州市、黄冈市2025年高三第一次调研测试化学试卷含解析
- 湖北省昆明市黄冈实验学校2025届高三第二次诊断性检测化学试卷含解析
- 如何有效管理自己的情绪
- 2025届贵州省毕节市织金第一中学高考冲刺化学模拟试题含解析
- 子痫的护理诊断
- 2025年高效建筑中水处理回收系统项目合作计划书
- 广东省梅州市皇华中学2025届高三冲刺模拟化学试卷含解析
- 第三单元正比例、反比例评估检测题( A 卷)(单元测试)无答案六kok电子竞技下册数学冀教kok电子竞技
- 江苏省盐城市、南京市2025年高三第一次调研测试化学试卷含解析
- 学校校本培训材料
- (高清kok电子竞技)DB36∕T 1324-2020 公路建设项目档案管理规范
- 2025年浙江杭州地铁运营分公司招聘笔试参考题库含答案解析
- 医学影像专业外语测试试卷
- 2025山西晋城市城区城市建设投资经营限公司招聘15人高频重点提升(共500题)附带答案详解
- 危险废物收集、贮存扩建项目环境风险评价专项kok电子竞技
- 2024年广东省普通高等学校招收中等职业学校毕业生统一模拟考试语文题真题(解析kok电子竞技)
- JJF(陕) 041-2020 宽带采集回放系统校准规范
- 应用英语(陕西交通职业技术学院)知到智慧树答案
- 保安员资格考试复习题库及答案(800题)
- 员工岗位培训范本
- 消防员职业技能鉴定中级技能题库
评论
0/150
提交评论