2025届山西省乡宁县九年级数学第一学期开学达标测试试题【含kok电子竞技】_第1页
2025届山西省乡宁县九年级数学第一学期开学达标测试试题【含kok电子竞技】_第2页
2025届山西省乡宁县九年级数学第一学期开学达标测试试题【含kok电子竞技】_第3页
2025届山西省乡宁县九年级数学第一学期开学达标测试试题【含kok电子竞技】_第4页
2025届山西省乡宁县九年级数学第一学期开学达标测试试题【含kok电子竞技】_第5页
已阅读5页,还剩17页未读, 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

kok电子竞技:文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届山西省乡宁县九年级数学第一学期开学达标测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)直线y=2x﹣6与x轴的交点坐标是()A.(0,3) B.(3,0) C.(0,﹣6) D.(﹣3,0)2、(4分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是分,方差分别是,,,,你认为派谁去参赛更合适()A.甲 B.乙 C.丙 D.丁3、(4分)如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(),下列四个说法:①,②,③,④.其中说法正确的是()A.①② B.①②③ C.①②④ D.①②③④4、(4分)如图,PA、PB分别与⊙O相切于点A、B,若∠P=50°,则∠C的值是()A.50° B.55° C.60° D.65°5、(4分)下列选项中,可以用来证明命题“若a?>1,则a>1”是假命题的反例是()A.a=-2. B.a==-1 C.a=1 D.a=26、(4分)下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼7、(4分)如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A. B. C. D.8、(4分)正方形具有而菱形不一定具有的性质是()A.四边相等 B.对角线相等 C.对角线互相垂直 D.对角线互相平分二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,已知直线、相交于点,平分,如果,那么__________度.10、(4分)从1、2、3、4这四个数中一次随机地取两个数,则其中一个数是另一个数两倍的概率是.11、(4分)如图,菱形ABCD的周长为20,对角线BD的长为6,则对角线AC的长为______.12、(4分)如图,函数y=k1x

(x>0)的图象与矩形OABC的边BC交于点D,分别过点A,D作AF∥DE,交直线y=k2x(k2<0)于点F,E.若OE=OF,BD=2CD,四边形ADEF的面积为12,则k1的值为13、(4分)在正方形ABCD中,对角线AC、BD相交于点O.如果AC=,那么正方形ABCD的面积是__________.三、解答题(本大题共5个小题,共48分)14、(12分)已知平面直角坐标系中有一点(,).(1)若点在第四象限,求的取值范围;(2)若点到轴的距离为3,求点的坐标.15、(8分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.(1)求反比例函数和一次函数的解析式;(2)点P是x轴上的一动点,当PA+PB最小时,求点P的坐标;(3)观察图象,直接写出不等式的解集.16、(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,6),请在所给网格区域(含边界)上按要求画整点四边形.(1)在图1中画一个整点四边形ABCD,四边形是轴对称图形,且面积为10;(2)在图2中画一个整点四边形ABCD,四边形是中心对称图形,且有两个顶点各自的横坐标比纵坐标小1.17、(10分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点C在x轴的正半轴上,AB边交y轴于点H,OC=4,∠BCO=60°.(1)求点A的坐标(2)动点P从点A出发,沿折线A﹣B一C的方向以2个单位长度秒的速度向终点C匀速运动,设△POC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,直接写出当t为何值时△POC为直角三角形.18、(10分)解方程:2x2﹣4x+1=0.(用配方法)B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,已知∠AON=40°,OA=6,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=_____°.20、(4分)在一次函数y=kx+b(k≠0)中,函数y与自变量x的部分对应值如表:x…﹣2﹣1012…y…1272m﹣8…则m的值为_____.21、(4分)如图,四边形ABCD是平行四边形,AE平分∠BAD交CD于点E,AE的垂直平分线交AB于点G,交AE于点F.若AD=4cm,BG=1cm,则AB=_____cm.22、(4分)如图,正比例函数和一次函数的图像相交于点A(2,1).当x>2时,_____________________.(填“>”或“<”)23、(4分)一个样本为1,3,a,b,c,2,2已知这个样本的众数为3,平均数为2,那么这个样本的中位数为_______二、解答题(本大题共3个小题,共30分)24、(8分)阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦(sine),记作sinA,即sinA=例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.25、(10分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人。26、(12分)如图,已知、分别是平行四边形的边、上的点,且.求证:四边形是平行四边形.

参考kok电子竞技与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】

把y=0代入y=2x﹣6即可求得直线与轴的交点坐标.【详解】当y=0时,2x-6=0,解得:x=3,所以,与x轴的交点坐标是(3,0),选B。此题考查一次函数图象上点的坐标特征,解题关键在于把y=0代入解析式2、A【解析】

根据方差的意义做出判断,方差是衡量一组数据波动大小的量,方差越。莶ǘ叫。菰轿榷,反之,表明数据波动大,不稳定【详解】解:∵,,,∴∵平均数一样∴选甲去参加比赛更合适故选A本题考查了方差的意义,熟练掌握方差的意义是解题关键3、B【解析】

可设大正方形边长为a,小正方形边长为b,所以据题意可得a2=49,b2=4;根据直角三角形勾股定理得a2=x2+y2,所以x2+y2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S△=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以,化简得2xy+4=49,式③正确;而据式④和式②得2x=11,x=5.5,y=3.5,将x,y代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确kok电子竞技为B.4、D【解析】

连接OA、OB,由已知的PA、PB与圆O分别相切于点A、B,根据切线的性质得到OA⊥AP,OB⊥PB,从而得到∠OAP=∠OBP=90°,然后由已知的∠P的度数,根据四边形的内角和为360°,求出∠AOB的度数,最后根据同弧所对的圆周角等于它所对圆心角度数的一半即可得到∠C的度数.【详解】解:连接OA、OB,

∵PA、PB与圆O分别相切于点A、B,

∴OA⊥AP,OB⊥PB,

∴∠OAP=∠OBP=90°,又∠P=50°,

∴∠AOB=360°-90°-90°-50°=130°,

又∵∠ACB和∠AOB分别是弧AB所对的圆周角和圆心角,

∴∠C=∠AOB=×130°=65°.

故。篋.此题考查了切线的性质,以及圆周角定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题,同时要求学生掌握同弧所对的圆周角等于所对圆心角的一半.5、A【解析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题:用来证明命题“若a2>2,则a>2”是假命题的反例可以是:a=-2.因为a=-2时,a2>2,但a<2.故选A6、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.7、B【解析】

根据矩形的性质,得△EBO≌△FDO,再由△AOB与△ABC同底且△AOB的高是△ABC高的得出结论.【详解】解:∵四边形为矩形,∴OB=OD=OA=OC,在△EBO与△FDO中,∵∠EOB=∠DOF,OB=OD,∠EBO=∠FDO,∴△EBO≌△FDO(ASA),∴阴影部分的面积=S△AEO+S△EBO=S△AOB,∵△AOB与△ABC同底且△AOB的高是△ABC高的,∴S△AOB=S△ABC=S矩形ABCD.故选B.本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质8、B【解析】

观察四个选项,分别涉及了四条边和对角线,我们应对照正方形和菱形边及对角线的性质,找出不同即可.【详解】正方形和菱形的四条边均相等,每条对角线均平分一组对角,正方形两条对角线相等且互相垂直平分,菱形对角线互相垂直且平分,但不相等.故选B.本题考查了正方形和菱形性质的知识,解决本题的关键是熟练掌握正方形和菱形的性质.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】

先根据角平分线的定义,求出∠BOC的度数,再根据邻补角的和等于11°求解即可.【详解】解:∵平分,,∴,∴,故kok电子竞技为:1.本题考查了角平分线的定义以及邻补角的性质,属于基础题.10、【解析】

从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况;其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4);则其概率为;11、8【解析】

利用菱形的性质根据勾股定理求得AO的长,然后求得AC的长即可.【详解】如图,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO∵BD=6,∴BO=3,∵周长为20,∴AB=5,由勾股定理得:AO=AB2∴AC=8,故kok电子竞技为:8本题主要考查了菱形的性质,解题的关键是菱形问题转化为直角三角形问题求解.12、2【解析】

如图,连接OD,过O作OM∥ED交AD于M,可以得出S△AOD=12S四边形ADEF,进而得到S矩形OACB的值.作DH⊥OA于H,可得S矩形OCDH【详解】解:如图,连接OD,过O作OM∥ED交AD于M.S△AOD=S△AOM+S△DOM=12OM×h1+12OM×h2==12OM(h1+h2),S四边形ADEF=12(AF+又∵OM=12(AF+ED),h1+h2=h,故S△AOD=12S四边形ADEF=12∵△AOD和矩形OACB同底等高,故S矩形OACB=12,作DH⊥OA于H.∵BD=2CD,BC=3CD,故S矩形OCDH=13×12=2,即CD×DH=xy=k1=2故kok电子竞技为:2.本题考查了反比例函数与几何综合.求出S△AOD的值是解答本题的关键.13、1【解析】

根据正方形的对角线将正方形分为两个全等的等腰直角三角形,AC是该三角形的斜边,由此根据三角形面积的计算公式得到正方形的面积.【详解】正方形ABCD的一条对角线将正方形分为两个全等的等腰直角三角形,即AC是等腰直角三角形的斜边,∵AC=∴正方形ABCD的面积两个直角三角形的面积和,∴正方形ABCD的面积=,故kok电子竞技为:1.此题考查正方形的性质,等腰直角三角形的性质,正确掌握正方形的性质是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)-<m<3;(1)点P的坐标为(3,﹣1)或(﹣3,-5)【解析】

(1)根据题意得出1m+1>0,m-3<0,解答即可;(1)根据题意可知1m+1的绝对值等于3,从而可以得到m的值,进而得到P的坐标.【详解】(1)由题意可得:1m+1>0,m-3<0,解得:﹣<m<3;(1)由题意可得:|1m+1|=3,解得:m=1或m=﹣1.当m=1时,点P的坐标为(3,-1);当m=﹣1时,点P的坐标为(﹣3,-5).综上所述:点P的坐标为(3,﹣1)或(﹣3,-5).本题考查了点的坐标,解题的关键是明确题意,求出m的值.15、(1)反比例函数的解析式为;一次函数的解析式为y=-x+5;(2)点P的坐标为(,0);(3)x<0或1≤x≤4【解析】

(1)将点A(1,4)代入可得m的值,求得反比例函数的解析式;根据反比例函数解析式求得点B坐标,再由A、B两点的坐标可得一次函数的解析式;(2)作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最。軧的坐标求得B′的坐标,然后根据待定系数法求得直线AB′的解析式,进而求得与x轴的交点P即可.(3)根据图象得出不等式的解集即可。【详解】解:(1)把A(1,4)代入,得:m=4,

∴反比例函数的解析式为;把B(4,n)代入,得:n=1,

∴B(4,1),

把A(1,4)、(4,1)代入y=kx+b,得:∴一次函数的解析式为y=-x+5;(2)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最。

∵B(4,1),

∴B′(4,-1),

设直线AB′的解析式为y=px+q,解得∴直线AB′的解析式为令y=0,得解得∴点P的坐标为(,0)(3)根据图象得当x<0或1≤x≤4时,一次函数y=-x+5的图象在反比例函数的上方。∴不等式的解集为x<0或1≤x≤4。本题主要考查反比例函数和一次函数的交点及待定系数法求函数解析式、轴对称-最短路线问题,掌握图象的交点的坐标满足两个函数解析式是解题的关键.16、画图见解析.【解析】【分析】(1)结合网格特点以及轴对称图形有定义进行作图即可得;(2)结合网格特点以及中心对称图形的定义按要求作图即可得.【详解】(1)如图所示(kok电子竞技不唯一);(2)如图所示(kok电子竞技不唯一).【点睛】本题考查了作图,轴对称图形、中心对称图形等,熟知网格特点以及轴对称图形、中心对称图形的定义是解题的关键.17、(1);(2);(3)t=1或t=3【解析】

(1)首先做辅助线BF⊥OC于F,AG⊥x轴于G,在Rt△BCF中,求出BF,BF=AG,OG=CF,又因为A在第二象限,即可得出点A的坐标.(2)需分两种情况:①当时,即P从A运动到B,求出三角形的面积,②当时,即P从B运动到C,求出三角形的面积,将两种情况综合起来即可得出最后结果.(3)在(2)的条件下,当t=1或t=3时,根据三角形的性质,可以判定△POC为直角三角形.【详解】(1)如图,做辅助线BF⊥OC于F,AG⊥x轴于G在Rt△BCF中,∠BCF=60°,BC=4,CF=2,BF=,BF=AG=,OG=CF=2,A在第二象限,故点A的坐标为(-2,)(2)当时,即P从A运动到B,S==,设P(m,n),∠BCO=60°,当时,即P从B运动到C,BP=2t,则cos30°==,,则S==综上所述,(3)在(2)的条件下,当t=1或t=3时,△POC为直角三角形.此题主要考查在平面直角坐标系中,利用菱形的性质,进行求解点坐标,以及动点问题,再利用直角三角形的三角函数,即可得解.18、x1=1+,x2=1﹣.【解析】试题分析:首先移项,再将二次项系数化为1,然后配方解出x即可.试题解析:2x2﹣4x+1=0,移项,得2x2﹣4x=-1,二次项系数化为1,得x2﹣2x=-,配方,得x2﹣2x+12=-+12,即(x-1)2=,解得,x-1=±,即x1=1+,x2=1-.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;(4)解出未知数.一、填空题(本大题共5个小题,每小题4分,共20分)19、50°或90°【解析】分析:分别从若AP⊥ON与若PA⊥OA去分析求解,根据三角函数的性质,即可求得kok电子竞技.详解:当AP⊥ON时,∠APO=90°,则∠A=50°,当PA⊥OA时,∠A=90°,即当△AOP为直角三角形时,∠A=50或90°.故kok电子竞技为50°或90°.点睛:此题考查了直角三角形的性质,注意掌握数形结合思想与分类讨论思想的应用.20、-2【解析】

把两组坐标代入解析式,即可求解.【详解】解:将(﹣1,7)、(0,1)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣5x+1.当x=1时,m=﹣5×1+1=﹣2.故kok电子竞技为:﹣2.此题主要考查一次函数的解析式,解题的关键是熟知待定系数法确定函数关系式.21、1【解析】

根据题意先利用垂直平分线的性质得出AF=EF,∠AFG=∠EFD=90°,DA=DE,再证明△DEF≌△GAF(ASA),从而得DE=AG,然后利用一组对边平行且相等的四边形为平行四边形证明四边形DAGE为平行四边形,之后利用一组邻边相等的四边形为菱形证明DAGE为菱形,从而可得AG=AB,最后将已知线段长代入即可得出kok电子竞技.【详解】解:∵AE的垂直平分线为DG∴AF=EF,∠AFG=∠EFD=90°,DA=DE∵四边形ABCD是平行四边形∴DC∥AB,AD∥BC,DC=AB,∴∠DEA=∠BAE∵AE平分∠BAD交CD于点E∴∠DAE=∠BAE∴在△DEF和△GAF中∴△DEF≌△GAF(ASA)∴DE=AG又∵DE∥AG∴四边形DAGE为平行四边形又∵DA=DE∴四边形DAGE为菱形.∴AG=AD∵AD=4cm∴AG=4cm∵BG=1cm∴AB=AG+BG=4+1=1(cm)故kok电子竞技为:1.本题考查平行四边形的判定与性质及菱形的判定与性质,熟练掌握相关性质及定理是解题的关键.22、>【解析】

根据图像即可判断.【详解】解:∵点A(2,1)∴x>2在A点右侧,由图像可知:此时>.故kok电子竞技为>此题考查的是比较一次函数的函数值,结合图像比较一次函数的函数值是解决此题的关键.23、2【解析】分析:先根据众数为3,平均数为2求出a,b,c的值,然后根据中位数的求法求解即可.详解:∵这个样本的众数为3,∴a,b,c中至少有两个数是3.∵平均数为2,∴1+3+a+b+c+2+2=2×7,∴a+b+c=6,∴a,b,c中有2个3,1个0,∴从小到大可排列为:0,1,2,2,3,3,3,∴中位数是2.故kok电子竞技为:2.点睛:本题考查了众数、平均数、中位数的计算,熟练掌握众数、平均数、中位数的计算方法是解答本题的关键.众数是一组数据中出现次数最多的数,众数可能没有,可能有1个,也可能有多个.二、解答题(本大题共3个小题,共30分)24、(1);(2);(3)2.【解析】分析:(1)根据sinA=直接写结论即可;(2)设AC=x,则BC=x,根据勾股定理得AB=,然后根据sinA=计算;(3)先根据sinB=求出AB的值,再利用勾股定理求BC的值即可.详解:(1)sinA=;(2)在Rt△ABC中,∠A=45°,设AC=x,则BC=x,AB=,则sinB=;(3)sinB=,则AB=4,由勾股定理得:BC2=AB2-AC2=16-12=4,∴BC=2.点睛:本题考查了信息迁移,勾股定理,正确理解在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦是解答本题的关键.25、(1)84.5,84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是89.6(分),3号选手的综合成绩是85.2(分),4号选手的综合成绩是90(分),5号选手的综合成绩是81.6(分),6号选手的综合成绩是83(分),综合成绩排序前两名人选是4号和2号.【解析】

(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出kok电子竞技.【详解】(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84;故kok电子竞技为:84.5,84;(2)设笔试成绩和面试成绩各占的百分百是x,y,根据题意得:,解得:,故笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号此题考查了加权平均数,用到的知识点是中位数、众数、加权平均数的计算公式,关键灵活运用有关知识列出算式.26、见解析.【解析】

根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出即可.【详解】解:证明:∵四边形是平行四边形,∴,且,∴,∵,∴,∴四边形是平行四边形此题考查平行四边形的判定与性质,解题关键在于掌握判定法则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

kok电子竞技:最新文档

评论

0/150

提交评论